search for books and compare prices
Tables of Contents for Signal Processing, Speech and Music
Chapter/Section Title
Page #
Page Count
Preface
v
 
CHAPTER 1 Acoustical Communication
1
6
CHAPTER 2 Functions
7
54
2.1 Registrations and signal functions
7
8
2.2 Exponential and logarithmic functions
15
8
A. The definition of the exponential function
15
1
B. Applications of exponential functions
16
3
1. The energy of a signal function
16
1
2. The notation of numbers
17
1
3. Exponential decay
18
1
4. Well-tempered tuning
19
1
C. The logarithm
19
1
D. An important application of the logarithm: the decibel
20
3
2.3 Differentiating functions
23
10
A. The differential quotient
23
3
B. Displacement, speed and acceleration
26
1
C. Rules for differentiation (1)
27
1
D. Differentiation without differential quotient
28
2
1. Differentiating network
28
1
2. Differentiating numerically
29
1
E. Rules for differentiation (2)
30
3
2.4 Equations
33
4
A. Algebraic equations
33
1
B. Difference and differential equations
34
3
2.5 The integration of functions
37
5
A. Integral and mean value
37
3
B. Rules, integrating network, integrating numerically
40
1
C. The RMS value of an asymmetrical signal
41
1
2.6 Sinusoidal vibrations and trigonometric functions
42
15
A. Sine function and sinusoidal movement
42
4
B. Time-discrete sine functions
46
2
C. The importance of sinusoidal vibrations
48
1
D. Trigonometric functions
48
4
E. Sinusoidal signals
52
5
2.7 Problems
57
4
CHAPTER 3 The Harmonic Oscillator
61
38
3.1 Undamped vibrations - the time-continuous case
61
8
A. The vibrating string; equation and solution
61
3
B. Other harmonic oscillators
64
5
1. Systems with a constant vibration period
64
1
2. The Helmholtz resonator
65
2
3. The LC-circuit
67
2
3.2 The undamped vibration - the time-discrete case
69
5
A. A simple programmed sinewave oscillator
69
1
B. The `look-up table' generator
69
1
C. A digital sinewave oscillator with feedback
70
4
3.3 Damped vibrations - the time-continuous case
74
6
A. Equation and solution
74
2
B. The damping factor
76
1
C. Electrical and mechanical systems
77
3
3.4 Damped vibrations - the time-discrete case
80
2
3.5 Forced vibrations - the time-continuous case
82
11
A. The equation and the solution
82
3
B. The amplitude of the forced vibration
85
1
C. Analysis of the filter behaviour
86
3
1. The Q-factor
86
1
2. Time-domain interpretation of Q
87
1
3. Frequency domain interpretation of Q
87
2
D. Global characterization of the resonance curve
89
1
E. The phase behaviour
90
1
F. Energy dissipation
90
3
3.6 Forced vibrations in a time-discrete system
93
3
A. Equation and Solution
93
1
B. A digital filter
94
2
3.7 Problems
96
3
CHAPTER 4 Signal Functions in the Time and Frequency Domains
99
78
4.1 The computer; binary number representation and programming
99
9
4.2 Time-discrete signal functions
108
10
A. Linear Pulse Code Modulation
108
6
1. Analog to digital conversion
108
2
2. Quantization noise
110
3
3. Digital-to-Analog Conversion
113
1
B. Other conversion systems
114
4
1. Compression/expansion
114
2
2. Predictive coding
116
2
4.3 The Fourier Transform
118
39
A. The relation between arbitrary and sinusoidal functions
118
3
B. The constant term
121
1
C. Determination of the Fourier coefficients
121
7
D. The importance of the Fourier Transform
128
1
E. Practical applications
128
1
F. Fourier analysis of periodic signals
129
10
1. Amplitude and phase spectrum
129
2
2. The power spectrum
131
1
3. Determination of the amplitude and phase spectrum of periodic signals
132
7
G. Fourier analysis independent of (possible) periodicity
139
11
1. Fourier analysis of time-continuous, non-periodic signals
139
5
2. Fourier analysis of time-discrete signals with `hidden' periodicities
144
6
H. The Fast Fourier Transform
150
4
1. Fourier analysis with the help of measuring apparatus
154
3
4.4 Time and frequency domain aspects of some signal-theoretical subjects
157
10
A. The sampling theorem
157
2
B. Digital-to-analog conversion
159
2
C. Changing the sampling frequency
161
1
D. Noise
162
5
1. Time domain description
163
1
2. Frequency domain description
164
3
4.5 Orthogonal functions and signal transforms
167
7
A. Vectors and functions
167
4
B. The Walsh transform
171
3
4.6 Problems
174
3
CHAPTER 5 System Theory
177
26
5.1 Classification of systems
177
6
A. Analog and digital systems
178
1
B. Classification based on the input/output relation
178
3
1. Linearity
178
1
2. Time-invariance
179
1
3. The sine in/sine out-principle
179
2
4. Causality
181
1
C. Non-linear behaviour of practical linear systems
181
2
1. Harmonic distortion
181
1
2. Intermodulation distortion
182
1
5.2 The description of linear systems
183
10
A. Time domain description; impulse response and convolution
183
6
B. Frequency domain description; the frequency response
189
1
C. Determination of impulse and frequency response of a system
190
3
5.3 Distortion-less linear systems
193
2
5.4 Filters
195
5
A. The frequency domain specification of filters
195
3
1. The amplitude response
195
1
2. The phase response
196
2
B. The time domain specification of filters
198
2
5.5 Problems
200
3
CHAPTER 6 Systems for Sound Signal Processing
203
54
6.1 Elementary electrical quantities, concepts and circuits
203
8
A. Voltage, current, resistance and power
203
3
B. Series and parallel circuits of resistors
206
1
C. Voltage source, input and output impedance
207
4
6.2 Linear systems with distortion-less transmission
211
13
A. Passive, analog systems for changing the scale factor
211
2
1. The potentiometer
211
1
2. The transformer
212
1
B. Active, analog systems for changing the scaling factor
213
5
1. The amplifier
213
2
2. Amplifier specifications
215
3
C. Operational amplifiers
218
1
D. Time delay unit
219
1
E. AD- and DA-converters
220
4
1. DA-converter
220
2
2. AD-converter
222
2
6.3 Filters
224
17
A. The principle of filtering; analysis and design of filters
224
5
B. A few linear filter and oscillator circuits
229
12
1. Analog, passive filters
229
3
2. Analog, active filters
232
1
3. Digital filters
233
3
4. Analog oscillators
236
2
5. Noise generators
238
3
6.4 Non-linear and time-variant systems
241
16
A. Systems with a nonlinear transfer function
241
4
B. Time-variant systems; amplitude and frequency modulation
245
12
1. Amplitude modulation
246
1
2. The spectrum of an AM-signal
247
1
3. Amplitude modulation with a non-suppressed carrier wave
248
1
4. Applications of amplitude modulation
249
1
5. Amplitude demodulation
249
1
6. Frequency modulation
250
2
7. The periodicity of the FM-signal
252
1
8. The spectrum of the FM-signal
253
3
9. Applications of frequency modulation
256
1
10. Frequency demodulation
256
1
6.5 Problems
257
1
CHAPTER 7 Analysis and Synthesis Techniques
257
40
7.1 The analysis of periodicity, autocorrelation
258
9
7.2 Cepstrum analysis
267
7
A. Deconvolution
267
5
B. Formant determination
272
1
C. The excitation signal in speech synthesis
273
1
7.3 LPC analysis and synthesis
274
11
A. Coding the speech signal
274
5
B. Speech analysis
279
3
C. Speech Synthesis
282
3
7.4 Sound synthesis
285
12
A. Formant synthesis via the wave shape
285
1
B. The Karplus-Strong Algorithm
286
1
C. Synthesis with the help of orthogonal functions
287
2
1. Fourier synthesis
288
1
2. Walsh synthesis
288
1
D. Non-linear synthesis via modulation
289
3
1. Amplitude modulation
289
1
2. Frequency modulation
290
2
E. Discrete summation
292
1
F. Synthesis via nonlinear distortion (wave-shaping)
293
2
G. Granular synthesis
295
2
7.5 Problems
297
1
CHAPTER 8 Acoustical Communication Revisited
297
10
8.1 The hearing organ, a linear system?
298
4
A. Filtering and critical bandwidth
298
3
B. Masking
301
1
C. Non-linear distortion
301
1
8.2 The transfer of modulation
302
2
8.3 Perceptual coding
304
3
References
307
4
Appendix, Solutions to Problems
311
18
Index
329