search for books and compare prices
Tables of Contents for Elements of Chemical Reaction Engineering
Chapter/Section Title
Page #
Page Count
PREFACE
xv
 
1 MOLE BALANCES
1
32
1.1 Definition of the Rate of Reaction, --r(A)
2
4
1.2 The General Mole Balance Equation
6
2
1.3 Batch Reactors
8
2
1.4 Continuous-Flow Reactors
10
6
1.4.1 Continuous-Stirred Tank Reactor
10
1
1.4.2 Tubular Reactor
11
3
1.4.3 Packed-Bed Reactor
14
2
1.5 Industrial Reactors
16
9
Summary
25
1
Questions and Problems
25
6
CD-ROM Material
31
1
Supplementary Reading
31
2
2 CONVERSION AND REACTOR SIZING
33
35
2.1 Definition of Conversion
33
1
2.2 Design Equations
34
6
2.2.1 Batch Systems
34
3
2.2.2 Flow Systems
37
3
2.3 Applications of the Design Equations for Continuous-Flow Reactors
40
8
2.4 Reactors in Series
48
8
2.5 Some Further Definitions
56
3
Summary
59
3
Questions and Problems
62
4
CD-ROM Material
66
1
Supplementary Reading
67
1
3 RATE LAWS AND STOICHIOMETRY
68
57
3.1 Basic Definitions
68
15
3.1.1 The Reaction Rate Constant
69
4
3.1.2 The Reaction Order
73
2
3.1.3 Elementary Rate Laws and Molecularity
75
2
3.1.4 Reversible Reactions
77
4
3.1.5 Nonelementary Rate Laws and Reactions
81
2
3.2 Present Status of Our Approach to Reactor Sizing and Design
83
1
3.3 Stoichiometric Table
84
21
3.3.1 Batch Systems
84
3
3.3.2 Constant-Volume Reaction Systems
87
3
3.3.3 Flow Systems
90
2
3.3.4 Volume Change with Reaction
92
3
3.4 Expressing Concentrations in Terms Other Than Conversion
105
2
3.5 Reactions with Phase Change
107
4
Summary
111
3
Questions and Problems
114
9
CD-ROM Material
123
1
Supplementary Reading
123
2
4 ISOTHERMAL REACTOR DESIGN
125
98
4.1 Design Structure for Isothermal Reactors
125
4
4.2 Scale-Up of Liquid-Phase Batch Reactor Data to the Design of a CSTR
129
18
4.2.1 Batch Operation
129
8
4.2.2 Design of CSTRs
137
10
4.3 Tubular Reactors
147
6
4.4 Pressure Drop in Reactors
153
21
4.4.1 Pressure Drop and the Rate Law
153
1
4.4.2 Flow Through a Packed Bed
154
14
4.4.3 Spherical Packed-Bed Reactors
168
5
4.4.4 Pressure Drop in Pipes
173
1
4.5 Synthesizing a Chemical Plant
174
2
4.6 Using C(A) (liquid) and F(A) (gas) in the Mole Balances and Rate Laws
176
11
4.6.1 CSTRs, PFRs, PBRs, and Batch Reactors
177
5
4.6.2 Membrane Reactors
182
5
4.7 Unsteady-State Operation of Reactors
187
13
4.7.1 Startup of a CSTR
189
1
4.7.2 Semibatch Reactors
190
7
4.7.3 Reactive Distillation
197
3
4.8 Recycle Reactors
200
2
Summary
202
2
ODE Solver Algorithm
204
1
Questions and Problems
205
14
Journal Critique Problems
219
1
Some Thoughts on Critiquing What You Read
220
1
CD-ROM Material
220
2
Supplementary Reading
222
1
5 COLLECTION AND ANALYSIS OF RATE DATA
223
59
5.1 Batch Reactor Data
224
15
5.1.1 Differential Method of Rate Analysis
224
11
5.1.2 Integral Method
235
4
5.2 Method of Initial Rates
239
3
5.3 Method of Half-Lives
242
1
5.4 Differential Reactors
243
7
5.5 Least-Square Analysis
250
12
5.5.1 Linearization of the Rate Law
250
2
5.5.2 Nonlinear Least-Squares Analysis
252
9
5.5.3 Weighted Least-Squares Analysis
261
1
5.6 Experimental Planning (CD-ROM)
262
1
5.7 Evaluation of Laboratory Reactors (CD-ROM)
263
5
5.7.1 Integral (Fixed-Bed) Reactor
264
1
5.7.2 Stirred Batch Reactor
264
1
5.7.3 Stirred Contained Reactor (SCSR)
265
1
5.7.4 Continuous-Stirred Tank Reactor (CSTR)
265
1
5.7.5 Straight-Through Transport Reactor
266
1
5.7.6 Recirculating Transport Reactor
266
1
5.7.7 Summary of Reactor Ratings
267
1
Summary
268
1
Questions and Problems
269
10
Journal Critique Problems
279
1
CD-ROM Material
280
1
Supplementary Reading
280
2
6 MULTIPLE REACTIONS
282
57
6.1 Maximizing the Desired Product in Parallel Reactions
284
7
6.1.1 Maximizing the Rate Selectivity Parameter S for One Reactant
285
3
6.1.2 Maximizing the Rate Selectivity Parameter S for Two Reactants
288
3
6.2 Maximizing the Desired Product in Series Reactions
291
4
6.3 Algorithm for Solution to Complex Reactions
295
19
6.3.1 Mole Balances
295
1
6.3.2 Net Rates of Reaction
296
1
6.3.3 Rate Laws
297
1
6.3.4 Stoichiometry: Relative Rates of Reaction
297
3
6.3.5 Stoichiometry: Concentrations
300
1
6.3.6 Combining Step
301
6
6.3.7 Multiple Reactions in a CSTR
307
7
6.4 Sorting It All Out
314
1
6.5 The Fun Part
315
1
6.6 The Attainable Region CD-ROM
316
2
Summary
318
2
Questions and Problems
320
15
Journal Critique Problems
335
1
CD-ROM Material
335
1
Supplementary Reading
336
3
7 NONELEMENTARY REACTION KINETICS
339
87
7.1 Fundamentals
340
4
7.1.1 Active Intermediates
340
2
7.1.2 Pseudo-Steady-State Hypothesis (PSSH)
342
2
7.2 Searching for a Mechanism
344
10
7.2.1 General Considerations
344
8
7.2.2 Reaction Pathways
352
2
7.3 Polymerization
354
29
7.3.1 Step Polymerization
356
4
7.3.2 Chain Polymerizations Reactions
360
8
7.3.3 Modeling a Batch Polymerization Reactor
368
2
7.3.4 Molecular Weight Distribution
370
5
7.3.5 Anionic Polymerization
375
8
7.4 Enzymatic Reaction Fundamentals
383
10
7.4.1 Definitions and Mechanisms
383
3
7.4.2 Michaelis-Menten Equation
386
3
7.4.3 Batch Reactor Calculations
389
2
7.4.4 Inhibition of Enzyme Reactions
391
1
7.4.5 Multiple Enzyme and Substrate Systems
392
1
7.5 Bioreactors
393
15
7.5.1 Cell Growth
394
2
7.5.2 Rate Laws
396
2
7.5.3 Stoichiometry
398
2
7.5.4 Mass Balances
400
4
7.5.5 Chemostats
404
1
7.5.6 Design Equations
404
2
7.5.7 Wash-out
406
1
7.5.8 Oxygen-Limited Germentation
407
1
7.5.9 Scale-up
407
1
Summary
408
2
Questions and Problems
410
13
CD-ROM Material
423
1
Journal Critique Problems
424
1
Supplementary Reading
424
2
8 STEADY-STATE NONISOTHERMAL REACTOR DESIGN
426
108
8.1 Rationale
426
1
8.2 The Energy Balance
427
13
8.2.1 First Law Thermodynamics
427
2
8.2.2 Evaluating the Work Term
429
1
8.2.3 Dissecting the Steady-State Molar Flow Rates to Obtain the Heat of Reaction
430
2
8.2.4 Dissecting the Enthalpies
432
2
8.2.5 Relating DeltaH(Rx)(T), DeltaH(0)(Rx), and DeltaC(p)
434
1
8.2.6 Constant of Mean Heat Capacities
435
1
8.2.7 Variable Heat Capacities
436
2
8.2.8 Heat Added to the Reactor, Q
438
2
8.3 Nonisothermal Continuous-Flow Reactors
440
28
8.3.1 Application to the CSTR
441
10
8.3.2 Adiabatic Tubular Reactor
451
7
8.3.3 Steady-State Tubular Reactor with Heat Exchange
458
10
8.4 Equilibrium Conversion
468
10
8.4.1 Adiabatic Temperature and Equilibrium Conversion
468
8
8.4.2 Optimum Feed Temperature
476
2
8.5 Nonadiabatic Reactor Operation: Oxidation of Sulfur Dioxide Example
478
12
8.5.1 Manufacture of Sulfuric Acid
478
3
8.5.2 Catalyst Quantities
481
1
8.5.3 Reactor Configuration
482
1
8.5.3 Operating Conditions
482
8
8.6 Multiple Steady States
490
10
8.6.1 Heat-Removed Term, R(T)
491
1
8.6.2 Heat of Generation, G(T)
492
1
8.6.3 Ignition-Extinction Curve
493
4
8.6.4 Runaway Reactions
497
1
8.6.5 Steady-State Bifurcation Analysis
498
2
8.7 Nonisothermal Multiple Chemical Reactions
500
7
8.7.1 Plug-Flow Reactors
500
4
8.7.2 CSTR
504
3
Summary
507
4
Questions and Problems
511
19
Journal Critique Problems
530
1
CD-ROM Material
530
2
Supplementary Reading
532
2
9 UNSTEADY-STATE NONISOTHERMAL REACTOR DESIGN
534
47
9.1 The General Equation
534
1
9.2 Unsteady Operation of CSTRs and Semibatch Reactors
535
18
9.2.1 Batch Reactors
537
1
9.2.2 Adiabatic Operation of a Batch Reactor
537
11
9.2.3 Transient CSTR, Batch, and Semibatch Reactors with Heat Exchanger--Ambient Temperature Not Spatially Uniform
548
5
9.3 Approach to the Steady State
553
5
9.4 Control of Chemical Reactors
558
8
9.4.1 Falling Off the Steady State
558
3
9.4.2 Adding a Controller to a CSTR
561
5
9.5 Nonisothermal Multiple Reactions
566
4
9.6 Unsteady Operation of Plug-Flow Reactors
570
1
Summary
571
1
Questions and Problems
572
7
CD-ROM Material
579
1
Supplementary Reading
579
2
10 CATALYSIS AND CATALYTIC REACTORS
581
105
10.1 Catalysts
581
10
10.1.1 Definitions
582
1
10.1.2 Catalyst Properties
583
1
10.2 Steps in a Catalytic Reaction
591
12
10.2.1 Adsorption Isotherms
594
5
10.2.2 Surface Reaction
599
2
10.2.3 Desorption
601
1
10.2.4 The Rate-Limiting Step
601
2
10.3 Synthesizing a Rate Law, Mechanism, and Rate-Limiting Step
603
16
10.3.1 Is the Adsorption of Cumene Rate-Limiting?
606
3
10.3.2 Is the Surface Reaction Rate-Limiting?
609
1
10.3.3 Is the Desorption of Benzene Rate-Limiting?
610
2
10.3.4 Summary of the Cumene Decomposition
612
4
10.3.5 Rate Laws Derived from the Pseudo-Steady-State Hypothesis
616
3
10.4 Design of Reactors for Gas-Solid Reactions
619
1
10.4.1 Basic Guidelines
619
1
10.4.2 The Design Equations
619
1
10.5 Heterogeneous Data Analysis for Reactor Design
620
11
10.5.1 Deducing a Rate Law from the Experimental Data
622
1
10.5.2 Finding a Mechanism Consistent with Experimental Observations
623
1
10.5.3 Evaluation of the Rate Law Parameters
624
3
10.5.4 Reactor Design
627
4
10.6 Chemical Vapor Deposition
631
3
10.7 Catalyst Deactivation
634
28
10.7.1 Types of Catalyst Deactivation
636
11
10.7.2 Temperature-Time Trajectories
647
2
10.7.3 Moving-Bed Reactors
649
6
10.7.4 Straight-Through Transport Reactors
655
5
10.7.5 Determining the Order of Deactivation
660
2
10.8 Reaction Engineering in Microelectronic Device Fabrication
662
3
10.8.1 Etching
664
1
Summary
665
3
Questions and Problems
668
14
Journal Critique Problems
682
1
CD-ROM Material
683
1
Supplementary Reading
684
2
11 EXTERNAL DIFFUSION EFFECTS ON HETEROGENEOUS REACTIONS
686
52
11.1 Mass Transfer Fundamentals
687
2
11.1.1 Definitions
687
1
11.1.2 Molar Flux
687
1
11.1.3 Fick's First Law
688
1
11.2 Binary Diffusion
689
10
11.2.1 Evaluating the Molar Flux
689
3
11.2.2 Boundary Conditions
692
1
11.2.3 Modeling Diffusion Without Reaction
692
5
11.2.4 Temperature and Pressure Dependence of D(AB)
697
1
11.2.5 Modeling Diffusion with Chemical Reaction
698
1
11.3 External Resistance to Mass Transfer
699
16
11.3.1 Mass Transfer Coefficient
699
3
11.3.2 Mass Transfer to a Single Particle
702
4
11.3.3 Mass Transfer-Limited Reactions in Packed Beds
706
8
11.3.4 Mass Transfer-Limited Reaction on Metallic Surfaces
714
1
11.4 What If...? (Parameter Sensitivity)
715
4
11.5 The Shrinking Core Model
719
9
11.5.1 Catalyst Regeneration
720
4
11.5.2 Dissolution of Monodispersed Solid Particles
724
2
11.5.3 Flow and Dissolution in Porous Media
726
2
Summary
728
1
Questions and Problems
729
6
Journal Article Problem
735
1
Journal Critique Problems
735
1
CD-ROM Material
735
1
Supplementary Reading
736
2
12 DIFFUSION AND REACTION IN POROUS CATALYSTS
738
71
12.1 Diffusion and Reaction in Spherical Catalyst Pellets
739
8
12.1.1 Effective Diffusivity
739
2
12.1.2 Derivation of the Differential Equation Describing Diffusion and Reaction
741
2
12.1.3 Writing the Equation in Dimensionless Form
743
3
12.1.4 Solution to the Differential Equation for a First-Order Reaction
746
1
12.2 Internal Effectiveness Factor
747
6
12.3 Falsified Kinetics
753
2
12.4 Overall Effectiveness Factor
755
3
12.5 Estimation of Diffusion- and Reaction-Limited Regimes
758
3
12.5.1 Weisz-Prater Criterion for Internal Diffusion
758
3
12.6 Mass Transfer and Reaction in a Packed Bed
761
6
12.7 Determination of Limiting Situations from Reaction Data
767
1
12.8 Multiphase Reactors
768
18
12.8.1 Slurry Reactors
769
14
12.8.2 Trickle Bed Reactors
783
3
12.9 Fluidized-Bed Reactors(CD-ROM)
786
1
12.10 The Overall View
787
2
12.11 Chemical Vapor Deposition Reactors
789
4
Summary
793
2
Questions and Problems
795
9
Journal Article Problems
804
1
Journal Critique Problems
805
1
CD-ROM Material
805
1
Supplementary Reading
806
3
13 DISTRIBUTIONS OF RESIDENCE TIMES FOR CHEMICAL REACTORS
809
62
13.1 General Characteristics
809
3
13.1.1 Residence-Time Distribution Function
811
1
13.2 Measurement of the RTD
812
7
13.2.1 Pulse Input
813
5
13.2.2 Step Tracer Experiment
818
1
13.3 Characteristics of the RTD
819
10
13.3.1 Integral Relationships
819
2
13.3.2 Mean Residence Time
821
2
13.3.3 Other Moments of the RTD
823
2
13.3.4 Normalized RTD Function, E(Tan)
825
1
13.3.5 Internal-Age Distribution 1Alpha
826
3
13.4 RTD in Ideal Reactors
829
7
13.4.1 RTDs in Batch and Plug-Flow Reactors
829
1
13.4.2 Single-CSTR RTD
829
2
13.4.3 Laminar Flow Reactor
831
2
13.4.4 PFR/CSTR Series RTD
833
3
13.5 Reactor Modeling with the RTD
836
2
13.6 Zero-Parameter Models
838
13
13.6.1 Segregation Model
838
6
13.6.2 Maximum Mixedness
844
7
13.6.3 Heat Effects
851
1
13.7 Using Software Packages
851
3
13.8 RTD and Multiple Reactions
854
6
13.8.1 Segregation Model
854
1
13.8.2 Maximum Mixedness
855
5
Summary
860
1
Questions and Problems
861
7
CD-ROM Material
868
1
Supplementary Reading
869
2
14 MODELS FOR NONIDEAL REACTORS
871
50
14.1 Some Guidelines
871
1
14.2 One-Parameter Models
872
21
14.2.1 Tanks-in-Series Model
873
4
14.2.2 Dispersion Model
877
16
14.3 Two-Parameter Models--Modeling Real Reactors with Combinations of Ideal Reactors
893
8
14.3.1 Real CSTR Modeled Using Bypassing and Dead Space
893
1
14.3.1A Solving the Model System for C(A) and X
894
1
14.3.1B Using a Tracer to Determine the Model Parameters in CSTR-with-Dead-Space-and-Bypass Model
895
4
14.3.2 Real CSTR Modeled with an Exchange Volume
899
1
14.3.2A Solving the Model System for C(A) and X
900
1
14.3.2B Using a Tracer to Determine the Model Parameters in a CSTR with an Exchange Volume
900
1
14.4 Use of Software Packages to Determine the Model Parameters
901
3
14.5 Other Models of Nonideal Reactors Using CSTRs and PFRs
904
1
14.6 Using the RTD Versus Needing a Model
904
3
Summary
907
2
Questions and Problems
909
7
CD-ROM Material
916
1
Supplementary Reading
917
4
Appendix A NUMERICAL TECHNIQUES
921
6
A.1 Useful Integrals in Reactor Design
921
1
A.2 Equal-Area Graphical Differentiation
922
2
A.3 Solutions to Differential Equations
924
1
A.4 Numerical Evaluation of Integrals
924
2
A.5 Software Packages
926
1
Appendix B IDEAL GAS CONSTANT AND CONVERSION FACTORS
927
2
Appendix C THERMODYNAMIC RELATIONSHIPS INVOLVING THE EQUILIBRIUM CONSTANT
929
6
Appendix D MEASUREMENT OF SLOPES ON SEMILOG PAPER
935
1
Appendix E SOFTWARE PACKAGES
936
2
Appendix F NOMENCLATURE
938
3
Appendix G MOLECULAR DYNAMICS OF CHEMICAL REACTIONS
941
12
G.1 Collision Theory
941
3
G.2 Transition State Theory
944
4
G.3 Molecular Dynamics
948
5
Appendix H OPEN-ENDED PROBLEMS
953
3
H.1 Design of Reaction Engineering Experiment
953
1
H.2 Effective Lubricant Design
953
1
H.3 Peach Bottom Nuclear Reactor
953
1
H.4 Underground Wet Oxidation
954
1
H.5 Hydrosulfurization Reactor Design
954
1
H.6 Continuous Bioprocessing
954
1
H.7 Methanol Synthesis
954
1
H.8 Cajun Seafood Gumbo
954
2
Appendix I HOW TO USE THE CD-ROM
956
2
Appendix J USE OF COMPUTATIONAL CHEMISTRY SOFTWARE PACKAGES
958
3
INDEX
961
15
ABOUT THE CD
976