search for books and compare prices
Tables of Contents for Structronic Systems
Chapter/Section Title
Page #
Page Count
Preface
vii
 
Chapter 11: Near-Minimum-Time Slewing and Vibration Control of Smart Structures
1
30
Youdan Kim
Jin-Young Suk
John L. Junkins
1. Introduction
1
3
2. The System Equations of Motion
4
5
2.1 Piezoceramic Sensor and Actuator
4
2
2.2 Hub-Appendage Model
6
3
3. Lyapunov Stability Theory
9
4
3.1 Basic Definitions
9
2
3.2 Lyapunov Direct Method
11
2
4. Lyapunov Stable Control Law
13
9
4.1 Near-Minimum-Time Maneuver
14
1
4.2 Lyapunov Tracking Control Law
15
5
4.3 Optimization of the Control Law
20
2
5. Numerical Simulations
22
5
6. Concluding Remarks
27
1
7. Acknowledgments
27
1
8. References
27
2
9. Nomenclature
29
2
Chapter 12: Active Polyelectrolyte Gels as Electrically Controllable Artificial Muscles and Intelligent Network Structures
31
55
Mohsen Shahinpoor
1. Introduction
31
4
2. Continuum Electrodynamics of Ionic Polymeric Gels
35
10
2.1 Modeling
35
3
2.2 Computer Simulation of Symmetric Swelling and Contraction of Polyelectrolytes
38
2
2.3 Gel Contraction/Shrinkage Example Based on the Continuum-Diffusion Model
40
5
3. Continuum-Diffusion Electromechanical Model for Asymmetric Bending of Ionic Polymeric Gels
45
8
3.1 Analytical Modeling
45
8
4. Continuum Micro-Electro-Mechanical Models
53
4
4.1 Theoretical Modeling
53
3
4.1.1 Numerical Simulation
56
1
5. Micro-Electro-Mechanical Modeling of Asymmetric Deformation of Ionic Gels
57
7
6. Experimental Observations on Deformation of Ionic Polymeric Gels in pH and Electric Fields
64
5
6.1 Deformation in Electric Field
64
1
6.2 Deformation in a pH Field
65
1
6.3 The Ionic "Flexogelectric Effect"
66
3
7. Polymeric Gel-Based Devices, Actuators and Systems
69
1
7.1 Design Details of Devices, Actuators and Systems
69
1
8. Musculoskeletal Considerations
70
2
8.1 Design Description
70
2
9. Conclusions
72
1
10. Acknowledgment
72
1
11. References
72
11
12. Nomenclature
83
3
Chapter 13: Active Dynamic Absorbers -- Theory and Application
86
47
Sanjiv Tewani
Budi Wong
Bruce Walcott
Keith Rouch
John Baker
1. Introduction
86
3
2. Active Dynamic Absorber
89
2
3. Theory of Active Dynamic Absorber
91
3
3.1 Overall System
91
1
3.2 Model of Piezoelectric Pusher
91
2
3.3 Dynamic Modeling of the System
93
1
4. Control Algorithms
94
4
4.1 Acceleration Feedback Control
94
2
4.2 Optimal Control: Disturbance Rejection
96
1
4.3 Sub-Optimal Control
97
1
4.4 Transient Response Simulation
97
1
5. Modeling and Control of Distributed Systems
98
4
5.1 Modal Control
99
3
6. Application: Control of Machine Tool Chatter Using Active Dynamic Absorber
102
9
6.1 Experimental Setup and Results
105
6
7. Research in Progress: Electromagnetic Actuation Techniques
111
19
7.1 Actuator Dynamics
111
1
7.2 Magnetic Circuit Analysis
112
5
7.3 Absorber Dynamics
117
1
7.4 System Modeling
118
1
7.5 Boring Bar Dynamics
118
1
7.6 Modal Control
119
2
7.7 Direct Output Feedback Control
121
2
7.8 Experimental Study
123
5
7.9 Conclusion/Summary of Work in Progress
128
2
8. References
130
1
9. Nomenclature
131
2
Chapter 14: Active Vibration Sink for Flexible Structures
133
46
Chan-Shin Chou
1. Introduction
133
1
2. The Control System
134
4
3. Experiments on Vibration Control
138
37
3.1 Strings
138
1
3.1.1 Analysis
138
3
3.1.2 Experiments
141
7
3.2 Beams
148
1
3.2.1 Actuator and Sensor
148
2
3.2.2 Cantilevered Beam
150
5
3.2.3 Simple Beam
155
5
3.2.4 Free Beam
160
5
3.3 Circular Plate
165
1
3.3.1 Analysis
165
3
3.3.2 Location of the Controllers
168
3
3.3.3 Experimental Results
171
4
4. Conclusions
175
1
5. Acknowledgment
176
1
6. References
176
1
7. Nomenclature
176
3
Chapter 15: Distributed Modal-Space Control and Estimation with Electroelastic Applications
179
84
Hayrani Oz
1. Introduction
179
5
2. Distributed-Lagrangean Formulation of Dynamic Systems
184
12
2.1 Hamilton's Law of Varying Action (HLVA)
184
1
2.2 Functional Forms of Distributed Energy Densities
185
2
2.3 Distributed-Lagrangean Equations of Motion and Boundary Conditions
187
2
2.4 Application to an Electroelastic Structure
189
1
2.4.1 Electroelastic Constitution, Internal Energy and External Work
189
1
2.4.2 Piezoelectric Shell Structure -- Energy Densities
190
1
2.4.3 Piezoelectric Plate -- Lagrangean EOM and Boundary Conditions
191
4
2.5 General Operator Form of Distributed-Parameter Electroelastic Systems
195
1
3. Modal Control of Distributed-Parameter Structures
196
18
3.1 Eigenvalue Problem of a Distributed-Parameter Structure: Modal Representation
196
2
3.2 Coupled Modal Control
198
2
3.3 Distributed-Independent Modal-Space Control (IMSC) and Independent Spatial Modal Filtering (ISMF)
200
6
3.4 Approximations to Distributed-Parameter-IMSC with Spatially Discrete Actuation and Sensing
206
4
3.5 Distributed-Parameter Modal Kalman Filters
210
1
3.5.1 Modal Kalman Filters
211
3
4. Independent Modal-Space Control and Sensing of Distributed Electroelastic Systems
214
15
4.1 General Electroelastic Control Problem
214
3
4.2 Realization of Distributed-IMSC via Piezoelectric Modal Actuators
217
6
4.2.1 Modal Actuators for Coupled Vibration of Electroelastic Plates
223
1
4.2.2 Modal Actuators for Uncoupled Bending Vibration of Electroelastic Plates
224
1
4.2.3 Modal Actuators for One-Dimensional Uncoupled Bending of Plates or Beams
225
1
4.3 Realization of Independent Spatial Modal Filters via Piezoelectric Modal Sensors
226
3
5. Multi-Piezoelectric-Patch Actuators (MPZPA)
229
6
5.1 Modal Control Loading of MPZPA's
230
5
6 Modal Estimation with Multi-Piezoelectric-Patch Sensors (MPZPS)
235
9
6.1 Static Modal State Estimation with MPZP's
236
1
6.2 Coupled-Modal Kalman Filters via MPZP's
237
2
6.3 Piezoelectric Independent Modal-Space Kalman Filters (IMSKF)
239
1
6.3.1 IMSKF with Continuous Piezoelectric Modal Sensors
239
2
6.3.2 IMSKF's via MPZPS's
241
3
7. Distributed Independent Modal-Space Control with MPZPA's: Road to Intelligent Structural Control
244
3
8. Concluding Remarks
247
2
9. Acknowledgment
249
1
10. References
249
5
11. Nomenclature
254
9
Chapter 16: Markov Parameters in System Identification: Old and New Concepts
263
31
Minh Q. Phan
Jer-Nan Juang
Richard E. Longman
1. Introduction
263
1
2. Input-Output Representation
264
7
2.1 Linear Difference Equation
265
1
2.2 The Weighting Sequence Description
265
2
2.3 State-Space Representation
267
2
2.4 Observer Equation for Input-Output Representation
269
2
3. Relationship Between the Markov Parameters of the Observer and Actual System
271
3
3.1 Recovery of System Markov Parameters from Observer Markov Parameters
271
2
3.2 Recovery of Observer Gain from Observer Markov Parameters
273
1
4. Relationship Between Discrete-Time and Continuous-Time Models
274
4
4.1 Continuous-Time Dynamic Equations
274
1
4.2 Conversion of Continuous-Time to Discrete-Time State-Space Model
275
1
4.3 Conversion of Discrete-Time to Continuous-Time State-Space Model
276
2
5. Toeplitz and Hankel Matrices
278
1
5.1 Toeplitz Matrix
278
1
5.2 Hankel Matrix
278
1
6. Realization from Markov Parameters
279
2
6.1 State-Space System Realization by ERA
279
1
6.2 State-Space System and Observer Realization
280
1
7. Determination of Markov Parameters from Sampled Data
281
7
7.1 Impulse Test Input
281
1
7.2 Unit Pulse Test Input
281
1
7.3 Extended Unit Pulse Test Input
282
1
7.4 Free Decay Response
283
1
7.5 Random Test Input
283
1
7.6 System Markov Parameters from General Input-Output Data
284
1
7.7 Observer Markov Parameters from General Input-Output Data
285
1
7.8 Observer Markov Parameters with Prescribed Observer Poles
286
2
8. Stochastic Linear Difference Equations
288
4
8.1 Kalman Filter Model
288
2
8.2 ARMAX Model via a Kalman Filter
290
2
9. Summary and Concluding Remarks
292
1
10. References
292
2
Chapter 17: Effect of System Non-Linearities on the Modified Model Reference Adaptive Control Scheme
294
22
Hemant M. Sardar
Mehdi Ahmadian
1. Introduction
294
3
2. Results
297
14
2.1 Formulation
297
2
2.2 Adjusting Mechanism Analysis
299
4
2.3 The Optimization Routine
303
1
2.4 Plant Non-Linearities Effect
305
6
3. Conclusions
311
1
4. References
312
3
5. Nomenclature
315
1
Chapter 18: Extending Teach-Repeat To Nonholonomic Robots
316
27
Steven B. Skaar
John-David Yoder
1. Introduction
316
2
2. Why Extend Teach-Repeat to Nonholonomic Systems?
318
2
3. Nonholonomic Kinematics and Their Effect on Robot Control
320
2
4. What Distinguishes a Nonholonomic System from a Holonomic System
322
4
5. Control
326
5
6. Estimation
331
6
6.1 The Need for Estimation
331
1
6.2 The Extended Kalman Filter
332
2
6.3 Video Observations
334
3
7. Path Planning
337
3
8. Summary and Conclusions
340
1
9. Acknowledgments
341
1
10. References
341
2
Chapter 19: Dynamic Analysis and Active Vibration Control of Chain Drive Systems
343
63
Chin-An Tan
Qian Fan
Shenger Ying
Dishan Huang
1. Introduction
343
6
1.1 General Remarks
343
1
1.2 Kinematic Analysis
344
1
1.3 Dynamic Analysis
345
2
1.4 Classical Vibration and Noise Reduction
347
1
1.5 Active Control of Chain Drives
348
1
1.6 About this Chapter
348
1
2. Overview of Passive and Active Control of Chain Drives
349
9
2.1 General Remarks
349
1
2.2 Passive Vibration Control
349
3
2.3 Active Vibration Control
352
1
2.3.1 Active Feedback Control
352
3
2.3.2 Active Feedforward Control
355
1
2.4 Components for Active Control
356
1
2.4.1 Sensors
356
1
2.4.2 Actuators
357
1
3. Wave Propagation Analysis of the Axially Moving Chain Dynamics
358
12
3.1 General Remarks
358
1
3.2 Problem Formulation
359
1
3.3 Response of the Axially Moving String
360
10
3.4 Interpretation of the Response in Terms of Wave Propagation
362
1
3.4.1 Types of Boundaries
362
1
3.4.2 Response in Terms of Propagation Functions
363
2
3.5 Construction of Propagation Functions Based on Wave Propagation
365
2
3.6 Examples and Results
367
3
4. Active Feedforward Vibration Control of the Axially Moving Chain
370
9
4.1 General Remarks
370
1
4.2 Feedforward Controller Design
371
5
4.3 Feedback Controller Design
376
1
4.4 Examples and Results
377
2
5. Active Control of Axially Moving Chain by Wave Cancellation
379
9
5.1 General Remarks
379
1
5.2 Problem Statement
379
1
5.3 Transfer Function Formulation
380
1
5.3.1 Uncontrolled System
380
1
5.3.2 Controlled System
381
1
5.4 Controller Design
382
1
5.4.1 Unconstrained Systems
382
2
5.4.2 Pole-Zero Cancellation
384
1
5.4.3 Constrained Systems
385
3
6. Experimental Results of Vibration Control of Chain Drives
388
9
6.1 General Remarks
388
1
6.2 Active Control System
388
2
6.3 Signal Noise Cancellation
390
4
6.4 Experimental Results
394
3
7. Concluding Remarks and Future Directions
397
2
8. Acknowledgments
399
1
9. References
399
5
10. Nomenclature
404
2
Chapter 20: Basic Concepts of Fault-Tolerant Computing Design
406
38
Chouki Aktouf
Arde Guran
Oum-El-Kheir Benkahla
1. Introduction
406
2
2. Basic Definitions
408
2
3. Principles of Fault-Tolerant Design
410
22
3.1 Redundancy Techniques
410
1
3.2 Fault Detection
411
3
3.2.1 Built-In Self-Test Techniques
414
2
3.2.2 Self-checking techniques
416
2
3.3 Fault Diagnosis
418
2
3.3.1 PMC Model
420
4
3.3.2 Generalization of Test Outcomes
424
1
3.3.3 Nature of faults
425
1
3.3.4 Distributed Diagnosis
426
2
3.4 Reconfiguration Techniques
428
1
3.5 Fault Recovery Techniques
429
1
3.5.1 Recovery without Checkpointing
430
1
3.5.2 Checkpoint-based Recovery
430
1
3.5.3 The Communication Problem in Recovery Techniques
431
1
4. Examples of Fault-Tolerant Computers
432
7
4.1 Computers for Aerospace Applications
433
1
4.2 Computers for Long Life Applications
434
1
4.3 Computers for Commercial Applications
435
3
4.4 General Purpose Computers
438
1
5. Conclusion
439
1
6. References
440
4
Subject Index
444
5
Author Index
449