search for books and compare prices
Tables of Contents for Structronic Systems
Chapter/Section Title
Page #
Page Count
Preface
vii
 
Chapter 1: The Piezoelectric Vibration Absorber Systems
1
36
Joseph Hollkamp
Thomas Starchville, Jr.
1. Introduction
1
1
2. The Mechanical Vibration
2
2
3. The Single Mode Absorber
4
11
3.1 Theory
4
2
3.2 Design Solution
6
1
3.3 Extension Including Viscous Modal Damping
6
4
3.4 The Electromechanical Coupling Coefficient
10
1
3.5 Inductance
11
2
3.6 Experimental Results
13
2
4. The Multimode Absorber
15
4
4.1 Derivation of Transfer Function
15
2
4.2 Design Solution
17
1
4.3 Experiments
17
2
5. The Self-Tuning Absorber
19
12
5.1 The Performance Function
20
1
5.2 The Control Scheme
21
2
5.3 The Experiments
23
8
6. Conclusions
31
2
7. References
33
2
8. Nomenclature
35
2
Chapter 2: Self-Sensing Control Applied to Smart Material Systems
37
24
Ephrahim Garcia
Lowell Dale Jones
1. Introduction
37
1
2. Materials Overview
38
6
2.1 Constitutive Modeling
38
3
2.2 Piezoelectric Considerations
41
2
2.3 Magnetostrictive Considerations
43
1
3. Self-Sensing Theory
44
1
4. Experimental Examples
45
11
4.1 A Self-Sensing PZT Micropositioner
45
1
4.1.1 The Micropositioner
45
1
4.1.2 Self-Sensing Implementation
46
1
4.1.3 Experimental Setup
47
1
4.1.4 Nonlinear Effects
47
1
4.1.5 Experimental Results
48
1
4.2 A Self-Sensing Magnetostrictive Strut
49
1
4.2.1 The Testbed
49
1
4.2.2 Preliminary Analysis
50
2
4.2.3 Experimental Results
52
4
5. Closing Remarks
56
1
6. Acknowledgements
56
2
7. References
58
2
8. Nomenclature
60
1
Chapter 3: An Introduction to Active Constrained Layer Damping Treatments
61
52
Steve Shen
1. Introduction
61
6
2. Theoretical Analysis of ACL Treatments
67
23
2.1 Equation of Motion
67
5
2.2 Remarks
72
3
2.3 Normalization
75
2
2.4 Stability
77
4
2.5 Controllability
81
1
2.6 Steady-State Response
82
2
2.7 Numerical Examples
84
6
3. Numerical Methods of ACL Treatments
90
7
3.1 Finite Element Formulations
91
3
3.2 Piezoelectric Constraining Layer
94
1
3.3 Steady-State Solutions
95
1
3.4 ATF for Viscoelastic Shear Layer
95
2
4. Experimental Results of ACL Treatments
97
8
4.1 Results by Bailey, Gruzen, and Madden
97
3
4.2 Results by Baz and Ro
100
1
4.3 Results by Van Nostrand, Knowles, and Inman
101
2
4.4 Results by Azvine, Tomlinson, and Wynne
103
2
5. Conclusions
105
1
6. Acknowledgements
106
1
7. References
106
4
8. Nomenclature
110
3
Chapter 4: Static and Dynamic Behavior of Adaptive Wings Carrying Externally Mounted Stores
113
26
Liviu Librescu
Ohseop Song
1. Introduction
113
4
1.1 Motivation of the Work
113
2
1.2 Basic Assumptions
115
2
2. Constitutive Equations
117
3
2.1 Distribution of Actuator Patches and 3-D Constitutive Equations
117
2
2.2 Local Constitutive Equations
119
1
3. The Equations of Motion and Boundary Conditions
120
3
4. Governing Equations
123
3
4.1 Shear Deformable Beams
123
1
4.2 The Classical Beam Model
124
2
5. The Control Law
126
1
6. Numerical Illustrations and Discussion
127
7
7. Conclusions
134
1
8. References
134
3
9. Nomenclature
137
2
Chapter 5: Adaptive Design and Active Composite Material Systems
139
12
Junji Tani
Jinhao Qiu
1. Introduction
139
1
2. Adaptive Design
139
1
3. Active Functional Gradient Material
140
2
4. Active Composite Panel
142
1
5. Active Composite Arch
142
1
6. Active Composite Cylindrical Shell
143
1
7. Disturbance Cancelation Method
144
2
8. Piezoelectric Sensor and Actuator
146
3
9. Conclusions
149
1
10. References
149
1
11. Nomenclature
150
1
Chapter 6: Microelectromechanics and Functionality of Segmented Cylindrical Transducers
151
46
Horn-Sen Tzou
Yumin Bao
V.B. Venkayya
1. Introduction
151
2
2. Laminated Cylindrical Shell
153
4
3. Segmented Distributed Sensor Patches
157
6
3.1 Segmented Sensor Patch
158
1
3.2 Modal Superposition and Modal Sensitivities
159
2
3.3 Quarterly Segmented Sensor Patches
161
2
4. Segmented Distributed Actuators (Open-loop)
163
5
4.1 Fully Distributed Actuator
165
1
4.2 Arbitrary p-th Segmented Actuator Patch
166
1
4.3 Four Segmented Actuator Patches
166
2
5. Segmented Distributed Sensor and Actuator (Closed-loop)
168
7
5.1 Arbitrary p-th Actuator Patch and Modal Actuation Factor
169
1
5.2 Quarterly Segmented Actuator Patches
170
5
6. Parametric Studies of Sensitivity and Active Vibration Control
175
16
6.1 Segmented Cylindrical Sensors
176
1
6.2 Segmented Cylindrical Actuators
176
1
6.3 Parametric Studies
177
14
7. Summary and Conclusions
191
2
8. Acknowledgement
193
1
9. References
193
2
10. Nomenclature
195
2
Chapter 7: Thermomechanical Modeling of Shape Memory Alloys and Composites
197
50
Dimitris Lagoudas
Z. Bo
J.G. Boyd
M.A. Qidwai
1. Thermomechanical Modeling of Shape Memory Alloys
197
20
1.1 Introduction
197
3
1.2 A Unified Thermodynamic Constitutive Model for SMA
200
1
1.2.1 Derivation of the Thermodynamic Constitutive Model
200
4
1.2.2 Unification of Several SMA Constitutive Models
204
3
1.2.3 Determination of Material Constants Used in the SMA Constitutive Equation
207
7
1.3 Numerical Implementation of the Constitutive Model
214
3
2. Micromechanics of Active Composites with Shape Memory Alloy Fibers
217
15
2.1 Introduction
217
1
2.2 Averaging Schemes
217
1
2.2.1 General Expressions for the Incremental Effective Composite Properties
218
2
2.2.2 The Mori-Tanaka Micromechanics Method
220
1
2.3 Finite Element Analysis of Composites with Periodic Arrangement of Fibers
221
1
2.3.1 Boundary Conditions for Unit Cell
221
2
2.4 Results and Discussion
223
9
3. Active Composite Beam with Shape Memory Alloy Fibers
232
9
3.1 Introduction
232
1
3.2 Formulation of the Boundary Value Problem
233
3
3.3 Numerical Implementation
236
1
3.3.1 Numerical Scheme
237
1
3.4 Results and Discussions
238
3
4. Acknowledgement
241
1
5. References
241
4
6. Nomenclature
245
2
Chapter 8: Active-Passive Hybrid Structural Vibration Controls Via Piezoelectrical Networks
247
24
Kon-Well Wang
Steven Kahn
1. Introduction
247
2
1.1 Active, Passive, and Active-Passive Hybrid Structural Controls
247
1
1.2 Structural Vibration Controls via Piezoelectric Materials
248
1
1.3 Active-Passive Hybrid Structures with Piezoelectric Actuators
248
1
2. Problem Statement and Objectives
249
1
3. System Description
249
3
4. Concurrent Control/Design Methodology
252
3
5. Case Studies and Results
255
8
5.1 Transient Response under Initial Disturbance
256
5
5.2 Response under External Broadband Excitation
261
2
6. Conclusions
263
1
7. Acknowledgment
263
1
8. References
264
2
9. Nomenclature
266
2
Appendix A
268
2
Appendix B
270
1
Chapter 9: On-Line Structural Damage Detection
271
62
Herman Shen
1. Introduction
271
5
1.1 Background Information
271
4
1.2 Research Objectives and Outline
275
1
2. Governing Equations
276
9
2.1 Modeling of Bernoulli-Euler Beams with a Fatigue Crack
276
3
2.2 Variational Principle
279
4
2.3 Equation of Motion and Associated Boundary Conditions
283
2
3. Galerkin Procedure and Modulation Solutions
285
27
3.1 Galerkin Procedure
285
2
3.2 Numerical Simulation
287
8
3.3 Modulation Solutions for the Low Frequency Harmonic Excitation
295
17
4. Applications
312
13
4.1 Application to Forced Vibrations of Cracked Beams
312
1
4.2 Application to General Bilinear Systems
313
3
4.3 Numerical Results
316
2
4.4 Comparison Between Numerical and Analytical Results
318
1
4.5 Discussion
318
7
5. Conclusion
325
2
6. References
327
4
7. Nomenclature
331
2
Chapter 10: On Material Degradation and Failure of Piezoelectric Ceramics
333
46
Horacio Sosa
1. Introduction
333
2
2. A Brief on Piezoelectric Ceramics
335
1
3. Applications of Piezoelectric Ceramics and Causes of Damage
336
3
4. Mathematical Description of Linear Piezoelectricity
339
4
4.1 Scheme of Notation
339
1
4.2 Fundamental Equations
340
3
5. Piezoelectric Ceramics with Defects: Generalities
343
3
6. Piezoelectric Ceramics with Defects: Experimental Observations
346
3
7. Piezoelectric Ceramics with Defects: A Particular Case
349
9
7.1 Background
349
1
7.2 Modeling
349
3
7.3 The Elliptic Cavity Problem
352
2
7.4 Characteristics of the Electric Field Inside the Cavity
354
2
7.5 Stresses Induced by the Electric Field
356
1
7.6 Concluding Remarks
357
1
8. Piezoelectric Ceramics with Surface Loads
358
16
8.1 Background
358
1
8.2 State Space Formulation for Electro-Elasticity
358
3
8.3 Properties of the Transfer Matrix and Alternate Representations
361
1
8.4 Scheme of Solution
362
1
8.5 Generalized Point Load on the Piezoelectric Half-Plane
363
5
8.6 Surface Electrodes
368
6
8.7 Concluding Remarks
374
1
9. Acknowledgements
374
1
10. References
375
3
Appendix
378
1
Subject Index
379
4
Author Index
383