search for books and compare prices
Tables of Contents for Standard Methods of Geophysical Formation Evaluation
Chapter/Section Title
Page #
Page Count
Preface
xi
 
1. Resistivity Methods
1
36
1.1 Introduction
1
1
1.2 Nomenclature
2
2
1.3 Unfocused Resistivity Methods
4
11
1.3.1 Single-Electrode Systems
6
3
1.3.2 Equivalent Circuit
9
6
1.3.2.1 The Effect of Formation Resistivity
11
1
1.3.2.2 Volume of Investigation
12
3
1.4 Averaging Within the Volume of Investigation
15
2
1.5 Position of the Return Electrode
17
1
1.6 Return Electrode Grounding Resistance
17
2
1.7 Multi-Electrode Systems
19
7
1.7.1 Normal Resistivity Devices
19
3
1.7.2 Empirical Method to Estimate R(t)
22
2
1.7.3 Departure Curves
24
1
1.7.4 Lateral Resistivity Devices
24
2
1.8 General Expression for Resistivity Devices
26
2
1.9 Microresistivity Systems
28
2
1.10 Miscellaneous Resistivity Items
30
2
1.11 Surface-Resistivity Methods
32
5
2. Focused Resistivity Methods
37
22
2.1 Focusing Electrode Devices -- Omnidirectional
37
11
2.1.1 3-Electrode Guard Logs
39
4
2.1.2 7-Electrode Guard Logs
43
2
2.1.3 Shallow Investigating Guarded Electrode Device
45
1
2.1.4 Spherically Focused Systems
46
1
2.1.5 Radial Pseudo-Geometrical Factors
47
1
2.2 Sidewall Guarded Electrode Systems
48
6
2.2.1 Microlaterolog (MLL)
49
1
2.2.2 Proximity Log (PL)
50
1
2.2.3 Microspherically Focused Log (MSFL)
51
3
2.3 General Reduction Procedure
54
5
3. Induction Methods
59
24
3.1 Introduction
59
1
3.2 Principles
60
3
3.3 Conventional Induction Logs
63
1
3.4 Phasor(SWC) Induction Systems
64
1
3.5 BPB Array Induction Logs
65
1
3.6 Factors Affecting Induction Logs
66
7
3.6.1 Skin Effect
66
1
3.6.2 Bed Boundary Effects
67
2
3.6.3 Thin-Bed Response
69
1
3.6.4 Dipping Beds
70
2
3.6.5 Net Bed Boundary Response
72
1
3.7 Data Reduction
73
10
3.7.1 Borehole Corrections
75
2
3.7.2 Adjacent Bed Correction
77
1
3.7.3 Invaded Zone Correction
78
5
4. Spontaneous Potentials
83
38
4.1 Introduction
83
3
4.2 Principles
86
7
4.2.1 Physical Principles
86
7
4.2.1.1 Absorption or Shale Potential
87
1
4.2.1.2 The Electrochemical or Diffusion Potential
87
2
4.2.1.3 Effect of Ion Types
89
4
4.3 Thin Beds
93
3
4.3.1 Formation Water Resistivity, R(w)
94
2
4.4 Taking Ion Types into Consideration
96
1
4.5 Dunlap Multipliers
96
2
4.6 The Effect of Shale
98
3
4.6.1 Direction of Deflection
99
2
4.6.2 Formation Resistivity Effects
101
1
4.7 The Static SP
101
1
4.8 The Calculation of Salinity
102
1
4.9 Reduction of Data
102
3
4.10 Methods of Determining R(w) and Use of R(w) Calculations
105
5
4.10.1 SP vs. R(xo)/R(t); The Ratio Method
105
2
4.10.2 R(w) from Resistivity Values
107
1
4.10.3 The Use of R(wa)
108
1
4.10.4 The Dual Water Model
108
1
4.10.5 R(w) from R(xo) and R(t)
108
2
4.11 The Electrokinetic Component
110
2
4.12 Redox Component
112
1
4.13 Problems with SP Measurements
113
5
4.13.1 Resistance Component
113
1
4.13.2 Sensitivity to Motion
114
1
4.13.3 Electrode Touching the Sidewall
115
1
4.13.4 Bimetallism
116
1
4.13.5 Improper Electrode Material
117
1
4.14 The SP Measurement in Fresh-Water Sands
118
3
5. Resistivity Log Interpretation
121
28
5.1 Introduction
121
2
5.2 The Archie Method
123
5
5.2.1 Values of the Cementation Exponent
127
1
5.3 The Ratio Method
128
1
5.4 The Rocky Mountain Method
129
1
5.5 The Migrated Hydrocarbon Method
129
4
5.5.1 Estimation of Permeability from the Resistivity Gradient
131
2
5.6 Determination of the Diameter of Invasion
133
7
5.6.1 Reading "Tornado" Charts
137
3
5.7 R(T) vs. F Crossplot--The Pickett Plot
140
3
5.7.1 The Nonlinear (Hingle) Crossplot
142
1
5.8 Moveable Hydrocarbon Method
143
2
5.9 The F(R'A) vs. F(R) Method
145
1
5.10 The R(W,A) vs. R(w) Method
145
1
5.11 Non-Hydrocarbon Usage of Resistance and Resistivity
145
4
6. Natural Gamma Radiation
149
34
6.1 Introduction
149
1
6.2 Radiation from Formation Materials
150
4
6.2.1 Clays
150
2
6.2.2 Sands
152
1
6.2.3 Carbonates
153
1
6.2.4 Igneous and Metamorphic Materials
153
1
6.2.5 Fractures and Faults
154
1
6.3 Gross Count or Total Count Gamma Ray Systems (GCGR)
154
15
6.3.1 Ranges of Detection
154
1
6.3.2 Equilibrium
155
4
6.3.3 Volume of Investigation and Borehole Corrections
159
2
6.3.4 Calibrations
161
2
6.3.5 Uses
163
6
6.3.5.1 Volume of Clay/Shale Estimation, V(sh)
164
3
6.3.5.2 Correlation
167
2
6.3.5.3 Lithology
169
1
6.4 Deadtime
169
2
6.5 Bed-Boundary Effects
171
2
6.6 Thin Beds
173
1
6.6 Dipping Beds and Slant Holes
174
1
6.7 Grade Calculations
175
5
6.8 Fracture Detection
180
1
6.9 Tracers
180
3
7. Gamma Ray Spectroscopy
183
30
7.1 Introduction
183
1
7.2 Chemical and Geological Implications
183
1
7.3 System Types
184
6
7.3.1 Detectors
184
1
7.3.2 Single Window Systems
185
1
7.3.3 KUT Systems
185
1
7.3.4 MCA Systems
186
2
7.3.5 Monitoring Systems
188
2
7.4 Problems with Spectrographic Systems
190
2
7.5 Major Mineral Descriptions
192
7
7.5.1 Uraniferous Mineral Systems
193
4
7.5.2 Thorium Minerals
197
2
7.6 Miscellaneous Effects
199
6
7.7 Spectrometric Ratios
205
4
7.7.1 Uses of Ratios
205
4
7.7.1.1 Uses of the Thorium/Uranium Ratio, Th/U
206
1
7.7.1.2 Potential Uses of the Uranium/Potassium Ratio, U/K
207
1
7.7.1.3 Some Uses of the Thorium/Potassium Ratio, Th/K
208
1
7.8 Cross-Plotting
209
4
8. Scattered Gamma Ray Methods
213
32
8.1 Introduction
213
1
8.2 Formation Density Logging
214
1
8.3 Source Energy Requirements
215
1
8.4 Operation
216
10
8.4.1 Example -- The Mole Fraction Method
222
1
8.4.2 Example -- The Molecular Mass Method
222
4
8.5 Downhole Tool Types
226
6
8.5.1 Omnidirectional Density Systems
226
2
8.5.2 Single-Spacing Sidewall Systems
228
1
8.5.3 Mudcake Compensated Density Systems
229
3
8.6 Calibrations
232
2
8.7 Interference by Natural Gamma Radiation
234
2
8.8 Rock Type Identification
236
1
8.9 Porosity Calculations
236
2
8.10 Coal Analysis
238
1
8.11 Scattered Gamma Ray Spectroscopy
239
6
9. Neutron Porosity Logging
245
44
9.1 Introduction
245
1
9.2 Physical Description
245
12
9.2.1 Operational Principles
246
1
9.2.2 Moderation
247
2
9.2.3 Reactions
249
8
9.3 Sources
257
5
9.3.1 A Brief History of Neutron Logging Sources
260
2
9.3.2 Detectors
262
1
9.4 Systems Currently in Use
262
3
9.4.1 Single-Spacing Systems
263
1
9.4.2 Sidewall Neutron Porosity Systems
264
1
9.4.3 Borehole Compensated Systems
265
1
9.5 Neutron Porosity Measurements
265
6
9.5.1 Shale Correction
265
1
9.5.2 Rock Type Corrections
266
2
9.5.3 Borehole Corrections
268
2
9.5.4 Cased Hole Use
270
1
9.6 Calibration
271
6
9.7 Data Reduction
277
8
9.7.1 Depth of Investigation
281
1
9.7.2 Source-Detector Spacing
282
2
9.7.3 Interpretation Methods
284
1
9.8 Chlorine Logs
285
4
10. Neutron Activation Methods
289
26
10.1 Introduction
289
2
10.2 Types of Systems
291
1
10.3 Neutron Generators
292
2
10.4 Detector Types
294
1
10.5 Action within the Formation Material
294
1
10.6 Saturation Systems
295
8
10.7 Neutron Induced Gamma Ray Logs
303
1
10.8 Capture Spectra
304
1
10.9 Ratio Logs
305
2
10.10 Uranium Systems
307
4
10.11 Thermal Neutron Formation Temperature Log
311
4
11. Acoustical Methods
315
48
11.1 Introduction
315
1
11.2 Principles
315
11
11.2.1 Operation Principles of Downhole Acoustic Systems
324
2
11.3 Tool Configurations
326
11
11.3.1 Single-Transmitter, Single-Receiver Systems
326
1
11.3.2 Multiple-Receiver Systems
327
3
11.3.3 Borehole Compensated Systems
330
2
11.3.4 Long Spacing Acoustic Systems
332
1
11.3.5 The Array Sonic System
332
1
11.3.6 Log Presentation
333
3
11.3.7 Effect of Gas and Road Noise
336
1
11.4 Full-Wave Systems
337
2
11.5 Evaluation
339
18
11.5.1 Porosity Determinations
339
7
11.5.2 Mechanical Properties
346
1
11.5.3 Effects of Clay or Shale
346
2
11.5.4 Primary Porosity
348
1
11.5.5 Fractured Media
348
2
11.5.6 Porosity and Lithology Determinations
350
 
11.5.6.1 T(a) vs. XXX Cross-Plot
350
1
11.5.6.2 XXX vs. Rt Cross-Plot
350
2
11.5.6.3 Travel Time vs. Bulk Density and Neutron Porosity
352
 
11.5.7 Analysis of the Log of Figure 11.31
345
12
11.6 Determination of Permeability from Acoustic Logs
357
1
11.7 Geological Uses of Acoustical Logs
358
1
11.8 Cement Bond Logging
359
2
11.9 Determination of the Shear Wave Velocity Using the Stoneley Mode
361
2
12. Formation Evaluation -- Standard Methods
363
62
12.1 Introduction
363
1
12.2 Assumptions
364
1
12.3 Methods Available
364
1
12.4 Multiple Parameters
364
1
12.5 Scope
365
1
12.6 Research
366
1
12.7 New Information
367
1
12.8 Methods to be Used
367
2
12.9 Analysis Methods -- Standard Measurements
369
3
12.9.1 Normalizing Data
369
1
12.9.2 Depths
370
1
12.9.3 Cuttings Lag
371
1
12.10 Identifying the Formation Sequence
372
2
12.10.1 Characteristic Signatures and Values
372
1
12.10.2 Target Zones
373
1
12.10.3 Visual Examination
373
1
12.11 Rock Type
374
11
12.11.1 Potassium Minerals
376
2
12.11.2 Shale and Clay Content
378
6
12.11.2.1 Clay Minerals
381
3
12.11.3 Carbonates
384
1
12.12 Quantitative Analysis
385
13
12.12.1 Shale Identification
385
3
12.12.2 Hard-Rock and Non-Hydrocarbon Environments
388
2
12.12.3 Quantitative Porosity and Saturation
390
1
12.12.4 Saturation Determination
391
6
12.12.5 Reserve Calculation
397
1
12.13 Cross-Plots
398
6
12.13.1 MN Cross-Plot
398
1
12.13.2 The AK Cross-Plot
399
1
12.13.3 The MID Plot
399
4
12.13.4 Simultaneous Equation Method
403
1
12.13.5 Frequency Plots
404
1
12.14 Permeability
404
5
12.14.1 Permeability Estimated from the Resistivity Gradient
407
2
12.14.2 Permeability as a Function of Mineral Content
409
1
12.15 Formation Fluids
409
5
12.15.1 Fluid Types
409
1
12.15.2 Fluid Distribution
410
2
12.15.3 Fluid Pressure
412
1
12.15.4 Overpressure
413
1
12.16 Structural Changes
414
1
12.17 Formation Rock Strength and Competence
415
2
12.18 Zone Extent
417
1
12.19 Redox Effects
417
4
12.20 Enhancement
421
2
12.21 Combinations
423
1
12.22 Other Methods
423
2
Glossary
425
4
Bibliography
429
6
Index
435