search for books and compare prices
Tables of Contents for Accelerator Driven Subcritical Reactors
Chapter/Section Title
Page #
Page Count
Introduction
1
4
The energy issue
4
35
World energy perspectives
4
13
Energy consumptions
4
1
Fossil reserves
4
2
Greenhouse effect
6
11
Renewable energies
17
3
Solar energy
17
1
Biomass
18
1
Wind energy
19
1
Hydroelectricity
19
1
Nuclear energy
20
15
Standard reactors
20
3
Breeder reactors
23
1
Nuclear waste disposal options
24
7
Deployment of a breeder park
31
4
Costs
35
1
The possible role of accelerator driven subcritical reactors
36
3
Safety advantages of subcriticality
37
1
Use of additional neutrons
38
1
Elementary reactor theory
39
54
Interaction of neutrons with nuclei
39
6
Elementary processes
39
1
Properties of heavy nuclei
40
2
Neutron density, flux and reaction rates
42
3
Neutron propagation
45
15
Boltzmann equation
46
1
Integral form of the Boltzmann equation
47
1
Fick's law
47
2
Diffusion equation
49
4
Slowing down of neutrons
53
7
Neutron multiplying assemblies
60
2
Limiting values
62
6
Critical masses
63
3
Maximum flux
66
2
Reactor control
68
13
Delayed neutrons
68
5
Temperature dependence of the reactivity
73
3
Critical trip
76
2
Residual heat extraction
78
3
Fuel evolution
81
6
The Bateman equations
82
1
The long-term fuel evolutions
82
5
Basics of waste transmutation
87
6
Radiotoxicities
87
1
Neutron balance for transmutation and incineration
88
5
ADSR principles
93
6
Properties of the multiplying medium
93
6
Energy gain
94
1
Neutron balance
94
3
Neutron importance
97
2
Practical simulation methods
99
39
Neutron reaction data files
99
4
Deterministic methods
103
1
Monte Carlo codes
104
1
Deterministic versus Monte Carlo simulation codes
104
1
MCNP, a well validated Monte Carlo code
105
1
Physics in MCNP
105
6
Precision and variance reduction
110
1
MCNP in practice
111
11
Introduction
111
1
Units
111
1
Input file structure
111
11
Examples
122
11
Reactivity calculation
122
1
Homogeneous versus heterogeneous cores
123
3
Subcritical core
126
6
Precision
132
1
Fuel evolution
133
5
Evolution constraint
134
1
Spatial flux
134
1
Special cross-section data
134
1
Time step between two MCNPs
135
3
The neutron source
138
33
Interaction of protons with matter
138
17
Electronic energy losses
138
1
Nuclear stopping
139
1
The nuclear cascade
140
2
Experimental tests of the INC models
142
6
The neutron source
148
6
State of the art of the simulation codes
154
1
Alternative primary neutron production
155
5
Deuteron induced neutron production
155
3
Muon catalysed fusion
158
1
Electron induced neutron production
159
1
Experimental determination of the energy gain
160
1
Two-stage neutron multipliers
161
3
High-intensity accelerators
164
7
State of the art of high-intensity accelerators
165
1
Requirements for ADSR accelerators
166
2
Perspectives for high-intensity accelerators for ADSRs
168
2
Examples of high-intensity accelerator concepts
170
1
ADSR kinetics
171
6
Reactivity evolutions
177
8
Long-term evolutions
177
1
Short-term reactivity excursions
177
8
Protactinium effect
179
2
Xenon effect
181
2
Temperature effect
183
1
Impact of reactivity excursions
184
1
Fuel reprocessing techniques
185
24
Basics of reprocessing
185
3
Wet processes
188
11
The purex process
188
11
Dry processes
199
10
Vaporization
200
1
Gas purge
201
1
Liquid--liquid extraction
201
3
Selective precipitation
204
1
Electrolysis
204
5
Generic properties of ADSRs
209
6
The homogeneous spherical reactor
209
4
General solution of the diffusion equation
210
1
The three-zone reactor
210
1
Model calculations
211
2
Parametric study of heterogeneous systems
213
2
Role of hybrid reactors in fuel cycles
215
27
The thorium-uranium cycle
215
14
Radiotoxicity
215
2
Breeding rates
217
2
Doubling time
219
3
Transition towards a 232Th-based fuel from the PWR spent fuel, using a fast spectrum and solid fuel
222
3
Thorium cycle with thermal spectrum
225
4
Incineration
229
13
Plutonium incineration
229
2
Minor actinide incineration
231
1
Initial reactivity of MA fuels
232
2
Fuel evolution
234
4
Solid versus liquid fuels
238
1
The paradox of minor actinide fuels
239
3
Ground laying proposals
242
10
Solid fuel reactors
242
4
Lead cooled ADSR: the Rubbia proposal
242
4
Molten salt reactors
246
3
The Bowman proposal
246
1
The TIER concept
247
2
Cost estimates
249
3
Scenarios for the development of ADSRs
252
11
Experiments
253
2
The FEAT experiment
253
1
The MUSE experiment
253
2
Demonstrators
255
8
Japan
255
1
United States
255
1
Europe
256
7
Appendix I Deep underground disposal of nuclear waste
263
16
I.1 Model of an underground disposal site
263
4
I1.2 Radioelement diffusion in geological layers
264
1
I.1.3 Physical model of diffusion in the clay layer
265
1
I.1.4 Simplified solution of the diffusion problem through the clay layer
266
1
I.1.5 Solubility as a limiting factor of the flow of radioactive nuclei
267
1
I.2 Determining the dose to the population
267
4
I.2.1 Some dose determination examples
268
1
I.2.2 Full computation example of the dose at the outlet
269
2
I.3 Accidental intrusion
271
3
I.3.1 Drilled samples
272
1
I.3.2 Using the well to draw drinking water
272
2
I.4 Heat production and sizing of the storage site
274
2
I.4.1 Schematic determination of the temperature distribution
274
1
I.4.2 Examples
275
1
I.5 Geological hazard
276
1
I.5 An underground laboratory. What for?
276
1
I.7 Conclusion
277
2
Appendix II The Chernobyl accident and the RMBK reactors
279
5
II.1 The RBMK-1000 reactor
279
2
II.2 Events leading to the accident
281
2
II.3 The accident
283
1
Appendix III Basics of accelerator physics
284
21
III.1 Linear accelerators
285
15
III.1 The Wideroe linear accelerator
285
2
III.2 The Alvarez or drift tube linac (DTL)
287
6
III.3 Phase stability
293
1
III.4 Beam focusing
294
6
III.5 The radio frequency quadrupole (RFQ)
300
1
III.2 Cyclotrons
300
1
III.3 Superconductive solutions
301
1
III.4 Space charge limitations
302
3
Bibliography
305
8
Index
313