search for books and compare prices
Tables of Contents for Radiative Processes in Astrophysics
Chapter/Section Title
Page #
Page Count
Chapter 1
Fundamentals of Radiative Transfer
1.1 The Electromagnetic Spectrum; Elementary Properties of Radiation
1.2 Radiative Flux
Macroscopic Description of the Propagation of Radiation
Flux from an Isotropic Source-The Inverse Square Law
1.3 The Specific Intensity and Its Moments
Definition of Specific Intensity or Brightness
Net Flux and Momentum Flux
Radiative Energy Density
Radiation Pressure in an Enclosure Containing an Isotropic Radiation Field
Constancy of Specific Intensity Along Rays in Free Space
Proof of the Inverse Square Law for a Uniformly Bright Sphere
1.4 Radiative Transfer
The Radiative Transfer Equation
Optical Depth and Source Function
Mean Free Path
Radiation Force
1.5 Thermal Radiation
Blackbody Radiation
Kirchhoff's Law for Thermal Emission
Thermodynamics of Blackbody Radiation
The Planck Spectrum
Properties of the Planck Law
Characteristic Temperatures Related to Planck Spectrum
1.6 The Einstein Coefficients
Definition of Coefficients
Relations between Einstein Coefficients
Absorption and Emission Coefficients in Terms of Einstein Coefficients
1.7 Scattering Effects; Random Walks
Pure Scattering
Combined Scattering and Absorption
1.8 Radiative Diffusion
The Rosseland Approximation
The Eddington Approximation; Two-Stream Approximation
Chapter 2
Basic Theory of Radiation Fields
2.1 Review of Maxwell's Equations
2.2 Plane Electromagnetic Waves
2.3 The Radiation Spectrum
2.4 Polarization and Stokes Parameters 62
Monochromatic Waves
Quasi-monochromatic Waves
2.5 Electromagnetic Potentials
2.6 Applicability of Transfer Theory and the Geometrical Optics Limit
Chapter 3
Radiation from Moving Charges
3.1 Retarded Potentials of Single Moving Charges: The Liénard-Wiechart Potentials
3.2 The Velocity and Radiation Fields
3.3 Radiation from Nonrelativistic Systems of Particles
Larmor's Formula
The Dipole Approximation
The General Multipole Expansion
3.4 Thomson Scattering (Electron Scattering)
3.5 Radiation Reaction
3.6 Radiation from Harmonically Bound Particles
Undriven Harmonically Bound Particles
Driven Harmonically Bound Particles
Chapter 4
Relativistic Covariance and Kinematics
4.1 Review of Lorentz Transformations
4.2 Four-Vectors
4.3 Tensor Analysis
4.4 Covariance of Electromagnetic Phenomena
4.5 A Physical Understanding of Field Transformations 129
4.6 Fields of a Uniformly Moving Charge
4.7 Relativistic Mechanics and the Lorentz Four-Force
4.8 Emission from Relativistic Particles
Total Emission
Angular Distribution of Emitted and Received Power
4.9 Invariant Phase Volumes and Specific Intensity
Chapter 5
5.1 Emission from Single-Speed Electrons
5.2 Thermal Bremsstrahlung Emission
5.3 Thermal Bremsstrahlung (Free-Free) Absorption
5.4 Relativistic Bremsstrahlung
Chapter 6
Synchrotron Radiation
6.1 Total Emitted Power
6.2 Spectrum of Synchrotron Radiation: A Qualitative Discussion
6.3 Spectral Index for Power-Law Electron Distribution
6.4 Spectrum and Polarization of Synchrotron Radiation: A Detailed Discussion
6.5 Polarization of Synchrotron Radiation
6.6 Transition from Cyclotron to Synchrotron Emission
6.7 Distinction between Received and Emitted Power
6.8 Synchrotron Self-Absorption
6.9 The Impossibility of a Synchrotron Maser in Vacuum
Chapter 7
Compton Scattering
7.1 Cross Section and Energy Transfer for the Fundamental Process
Scattering from Electrons at Rest
Scattering from Electrons in Motion: Energy Transfer
7.2 Inverse Compton Power for Single Scattering
7.3 Inverse Compton Spectra for Single Scattering
7.4 Energy Transfer for Repeated Scatterings in a Finite, Thermal Medium: The Compton Y Parameter
7.5 Inverse Compton Spectra and Power for Repeated Scatterings by Relativistic Electrons of Small Optical Depth
7.6 Repeated Scatterings by Nonrelativistic Electrons: The Kompaneets Equation
7.7 Spectral Regimes for Repeated Scattering by Nonrelativistic Electrons
Modified Blackbody Spectra; y>1
Unsaturated Comptonization with Soft Photon Input
Chapter 8
Plasma Effects
8.1 Dispersion in Cold, Isotropic Plasma
The Plasma Frequency
Group and Phase Velocity and the Index of Refraction
8.2 Propagation Along a Magnetic Field; Faraday Rotation
8.3 Plasma Effects in High-Energy Emission Processes
Cherenkov Radiation
Razin Effect
Chapter 9
Atomic Structure
9.1 A Review of the Schrödinger Equation
9.2 One Electron in a Central Field
Wave Functions
9.3 Many-Electron Systems
Statistics: The Pauli Principle
Hartree-Fock Approximation: Configurations
The Electrostatic Interaction; LS Coupling and Terms
9.4 Perturbations, Level Splittings, and Term Diagrams
Equivalent and Nonequivalent Electrons and Their Spectroscopic Terms
Spin-Orbit Coupling
Zeeman Effect
Role of the Nucleus; Hyperfine Structure
9.5 Thermal Distribution of Energy Levels and Ionization
Thermal Equilibrium: Boltzmann Population of Levels
The Saha Equation
Chapter 10
Radiative Transitions
10.1 Semi-Classical Theory of Radiative Transitions
The Electromagnetic Hamiltonian
The Transition Probability
10.2 The Dipole Approximation
10.3 Einstein Coefficients and Oscillator Strengths
10.4 Selection Rules
10.5 Transition Rates
Bound-Bound Transitions for Hydrogen
Bound-Free Transitions (Continuous Absorption) for Hydrogen
Radiative Recombination--Milne Relations
The Role of Coupling Schemes in the Determination of f Values
10.6 Line Broadening Mechanisms
Doppler Broadening
Natural Broadening
Collisional Broadening
Combined Doppler and Lorentz Profiles
Chapter 11
Molecular Structure
11.1 The Born-Oppenheimer Approximation: An Order of Magnitude Estimate of Energy Levels
11.2 Electronic Binding of Nuclei
The H2+ Ion
The H2 Molecule
11.3 Pure Rotation Spectra
Energy Levels
Selection Rules and Emission Frequencies
11.4 Rotation-Vibration Spectra
Energy Levels and the Morse Potential
Selection Rules and Emission Frequencies
11.5 Electronic-Rotational-Vibrational Spectra
Energy Levels
Selection Rules and Emission Frequencies