search for books and compare prices
Tables of Contents for Panoramic Vision
Chapter/Section Title
Page #
Page Count
Foreword
v
 
Preface
vii
 
Contributors
xix
 
Introduction
1
4
R. Benosman
S.B. Kang
Omnidirectional Vision in Nature
1
2
Man-Made Panoramic Vision
3
1
Organization of Book
3
1
Acknowledgment
4
1
A Brief Historical Perspective on Panorama
5
16
R. Benosman
S.B. Kang
Panorama in the Beginning
5
1
From Panorama Exhibits to Photography
6
3
Panorama in Europe and the United States
9
4
Panorama in Britain
9
1
Panorama in France
9
2
Panorama in Germany
11
1
Panorama in the United States
12
1
From Panoramic Art to Panoramic Technology
13
2
Panoramic Cameras
14
1
Omnidirectional Vision Sensors
14
1
The Use of Mirrors in Paintings
15
3
The Evolution of Mirrors
15
1
Mirrors in Paintings
16
2
Anamorphosis
18
1
Concluding Remarks
18
1
Additional Online Resources
19
1
Acknowledgment
19
2
Section I: Catadioptric Panoramic Systems
21
100
Development of Low-Cost Compact Omnidirectional Vision Sensors
23
16
H. Ishiguro
Introduction
23
1
Previous Work
24
2
Omnidirectional Vision Sensors
24
1
Omnidirectional Images
25
1
Designs of ODVSs
26
4
Designs of Mirrors
26
3
Design of a Supporting Apparatus
29
1
Trial Production of C-ODVSs
30
4
Eliminating Internal Reflections
31
1
Making Mirrors from Metal
31
1
Focusing in an ODVS
32
2
Developed C-ODVSs
34
1
Applications of ODVSs
34
4
Multimedia Applications
34
2
Monitoring Applications
36
1
Mobile Robot Navigation
37
1
Conclusion
38
1
Single Viewpoint Catadioptric Cameras
39
34
S. Baker
S.K. Nayar
Introduction
39
2
The Fixed Viewpoint Constraint
41
13
Derivation of the Fixed Viewpoint Constraint Equation
41
3
General Solution of the Constraint Equation
44
1
Specific Solutions of the Constraint Equation
45
8
The Orthographic Case: Paraboloidal Mirrors
53
1
Resolution of a Catadioptric Camera
54
5
The Orthographic Case
57
2
Defocus Blur of a Catadioptric Camera
59
6
Analysis of Defocus Blur
59
3
Defocus Blur in the Orthographic Case
62
1
Numerical Results
63
2
Case Study: Parabolic Omnidirectional Cameras
65
5
Selection of the Field of View
67
1
Implementations of Parabolic Systems
67
3
Conclusion
70
3
Epipolar Geometry of Central Panoramic Catadioptric Cameras
73
30
T. Pajdla
T. Svoboda
V. Hlavac
Introduction
73
1
Terminology and Notation
74
1
Overview of Existing Panoramic Cameras
75
4
Stereo and Depth from Panoramic Images
77
1
Classification of Existing Cameras and Comparison of Their Principles
77
2
Central Panoramic Catadioptric Camera
79
2
Camera Model
81
6
Hyperbolic Mirror
82
3
Parabolic Mirror
85
2
Examples of Real Central Panoramic Catadioptric Cameras
87
1
Epipolar Geometry
88
9
Hyperbolic Mirror
92
3
Parabolic Mirror
95
2
Estimation of Epipolar Geometry
97
1
Normalization for Estimation of Epipolar Geometry
98
4
Normalization for Conventional Cameras
98
1
Normalization for Omnidirectional Cameras
99
3
Summary
102
1
Folded Catadioptric Cameras
103
18
S.K. Nayar
V. Peri
Introduction
103
1
Background: Single Mirror Systems
104
1
Geometry of Folded Systems
105
7
The General Problem of Folding
105
1
The Simpler World of Conics
106
2
Equivalent Single Mirror Systems
108
4
Optics of Folded Systems
112
3
Pertinent optical effects
113
1
Design Parameters
114
1
System Optimization
115
1
An Example Implementation
115
6
Section II: Panoramic Stereo Vision Systems
121
80
A Real-time Panoramic Stereo Imaging System and Its Applications
123
20
A. Basu
J. Baldwin
Introduction
123
2
Previous Applications
125
1
Stereo Design
126
3
Vertical Extent of Stereo Field of View
127
1
Effective Eye Separation
127
1
Orientation of Eye Separation
128
1
Device Calibration
129
4
Analog Approach
130
1
Digital Approach
131
2
Hardware Design and Implementation
133
1
Results Produced by System
134
2
The Mathematics of Panoramic Stereo
136
3
Experimental Results
139
2
Further Improvements
141
1
Acknowledgment
141
2
Panoramic Imaging with Horizontal Stereo
143
18
S. Peleg
M. Ben-Ezra
Y. Pritch
Introduction
143
2
Panoramic Images
143
1
Visual Stereo
144
1
Caustic Curves
145
1
Multiple Viewpoint Projections
145
1
Stereo Panoramas with Rotating Cameras
145
3
Stereo Mosaicing with a Slit Camera
147
1
Stereo Mosaicing with a Video Camera
148
1
Stereo Panoramas with a Spiral Mirror
148
3
Stereo Panoramas with a Spiral Lens
151
6
Stereo Pairs from Stereo Panoramas
157
1
Panoramic Stereo Movies
158
1
Left-right Panorama Alignment (Vergence)
159
1
Concluding Remarks
160
1
Acknowledgment
160
1
Panoramic Stereovision Sensor
161
8
R. Benosman
J. Devars
Rotating a Linear CCD
161
3
System Function
164
2
Toward a Real-time Sensor?
166
1
Acknowledgment
167
2
Calibration of the Stereovision Panoramic Sensor
169
12
R. Benosman
J. Devars
Introduction
169
1
Linear Camera Calibration using Rigid Transformation
169
4
The Pinhole Model
169
2
Applying the Rigid Transformation
171
1
Computing the Calibration Parameters
171
1
Reconstruction
172
1
Experimental Results
172
1
Calibrating the Panoramic Sensor using Projective Normalized Vectors
173
4
Mathematical Preliminaries
173
2
Camera Calibration
175
2
Handling Lens Distortions
177
1
Results
178
2
Conclusion
180
1
Acknowledgment
180
1
Matching Linear Stereoscopic Images
181
20
R. Benosman
J. Devars
Introduction
181
1
Geometrical Properties of the Panoramic Sensor
181
2
Positioning the Problem
183
1
A Few Notions on Dynamic Programing
184
1
Principle
184
1
The Family of Dynamic Programming Used
184
1
Matching Linear Lines
185
8
Principle
185
1
Cost Function
186
1
Optimal Path Retrieval and Results
186
1
Matching Constraints
187
6
Region Matching
193
8
Introduction
193
1
Principle of Method
193
1
Computing Similarity between Two Intervals
194
1
Matching Modulus
195
1
Matching Algorithm
196
1
Adding Constraints
196
2
Experimental Results
198
3
Section III: Techniques for Generating Panoramic Images
201
126
Characterization of Errors in Compositing Cylindrical Panoramic Images
205
22
S.B. Kang
R. Weiss
Introduction
205
3
Analyzing the Error in Compositing Length
206
1
Camera Calibration
206
1
Motivation and Outline
207
1
Generating a Panoramic Image
208
1
Compositing Errors due to Misestimation of Focal Length
209
9
Derivation
210
5
Image Compositing Approach to Camera Calibration
215
3
Compositing Errors due to Misestimation of Radial Distortion Coefficient
218
4
Effect of Error in Focal Length and Radial Distortion Coefficient on 3D Data
222
1
An Example using Images of a Real Scene
223
3
Summary
226
1
Construction of Panoramic Image Mosaics with Global and Local Alignment
227
42
H.-Y. Shum
R. Szeliski
Introduction
227
3
Cylindrical and Spherical Panoramas
230
3
Alignment Framework and Motion Models
233
7
8-parameter Perspective Transformations
234
3
3D Rotations and Zooms
237
2
Other Motion Models
239
1
Patch-based Alignment Algorithm
240
2
Patch-based Alignment
240
1
Correlation-style Search
241
1
Estimating the Focal Length
242
2
Closing the Gap in a Panorama
243
1
Global Alignment (Block Adjustment)
244
6
Establishing the Point Correspondences
245
1
Optimality Criteria
245
3
Solution Technique
248
2
Optimizing in Screen Coordinates
250
1
Deghosting (Local Alignment)
250
2
Experiments
252
8
Global Alignment
253
2
Local Alignment
255
3
Additional Examples
258
2
Environment Map Construction
260
3
Discussion
263
2
Appendix: Linearly-constrained Least-squares
265
4
Lagrange Multipliers
266
1
Elimination Method
266
1
QR Factorization
267
2
Self-Calibration of Zooming Cameras from a Single Viewpoint
269
22
L. de Agapito
E. Hayman
I.D. Reid
R.I. Hartley
Introduction
269
1
The Rotating Camera
270
5
Camera Model
270
1
The Inter-image Homography
271
1
The Infinite Homography Constraint
272
3
Self-calibration of Rotating Cameras
275
4
Problem Formulation
275
1
Constant Intrinsic Parameters
275
1
Varying Intrinsic Parameters
276
3
Experimental Results
279
3
Experiments with Synthetic Data
279
2
Experiments with Real Data
281
1
Optimal Estimation: Bundle-adjustment
282
4
Maximum Likelihood Estimation (MLE)
283
1
Using Priors on the Estimated Parameters: Maximum a Posteriori Etimation (MAP)
284
1
Experimental Results
285
1
Discussion
286
5
360 x 360 Mosaics: Regular and Stereoscopic
291
18
S.K. Nayar
A.D. Karmarkar
Spherical Mosaics
291
1
360° Strips
292
3
360° Slices
295
1
Slice Cameras
296
1
Experimental Results
297
1
Variants of the Slice Camera
298
1
Summary
299
10
Mosaicing with Strips on Adaptive Manifolds
309
18
S. Peleg
B. Rousso
A. Rav-Acha
A. Zomet
Introduction
309
4
Mosaicing with Strips
313
1
Cutting and Pasting of Strips
314
3
Selecting Strips
314
1
Pasting Strips
315
2
Examples of Mosaicing Implementations
317
3
Strip Cut and Paste
317
1
Color Merging in Seams
318
1
Mosaicing with Straight Strips
318
1
Mosaicing with Curved Strips: Forward Motion
319
1
Rectified Mosaicing: A Tilted Camera
320
3
Asymmetrical Strips
321
1
Symmetrical Strips
322
1
View Interpolation for Motion Parallax
323
2
Concluding Remarks
325
2
Section IV: Applications
327
98
3D Environment Modeling from Multiple Cylindrical Panoramic Images
329
30
S.B. Kang
R. Szeliski
Introduction
329
1
Relevant Work
330
1
Overview of Approach
331
1
Extraction of Panoramic Images
332
1
Recovery of Epipolar Geometry
333
4
8-point Algorithm: Basics
334
2
Tracking Features for 8-point Algorithm
336
1
Omnidirectional Multibaseline Stereo
337
6
Reconstruction Method 1: Unconstrained Feature Tracking and 3D Data Merging
338
1
Reconstruction Method 2: Iterative Panoramic Structure from Motion
339
2
Reconstruction method 3: Constrained Depth Recovery using Epipolar Geometry
341
2
Stereo Data Segmentation and Modeling
343
1
Experimental Results
343
4
Synthetic Scene
343
2
Real Scenes
345
2
Discussion and Conclusions
347
2
Appendix: Optimal Point Intersection
349
1
Appendix: Elemental Transform Derivatives
350
9
N-Ocular Stereo for Real-Time Human Tracking
359
18
T. Sogo
H. Ishiguro
M.M. Trivedi
Introduction
359
2
Multiple Camera Stereo
361
2
The Correspondence Problems and Trinocular Stereo
361
1
Problems of Previous Methods
362
1
Localization of Targets by N-ocular Stereo
363
3
Basic Algorithm
363
1
Localization of Targets and Error Handling
364
1
False Matchings in N-ocular Stereo
365
1
Implementing N-ocular Stereo
366
3
Simplified N-ocular Stereo
366
1
Error Handling in the Simplified N-ocular Stereo
367
2
Experimentation
369
5
Hardware Configuration
369
1
Detecting Azimuth Angles of Targets
369
1
Precision of N-ocular Stereo
370
2
Tracking People
372
1
Application of the System
373
1
Conclusion
374
3
Identifying and Localizing Robots with Omnidirectional Vision Sensors
377
16
H. Ishiguro
K. Kato
M. Barth
Introduction
377
1
Omnidirectional Vision Sensor
378
1
Identification and Localization Algorithm
378
6
Methodology
379
1
Triangle Constraint
380
1
Triangle Verification
381
1
Error Handling
382
2
Computational Cost
384
1
Experimental Results
384
6
Simulation Experiments
384
3
Real-world Experiment
387
3
Conclusions
390
3
Video Representation and Manipulations Using Mosaics
393
32
P. Anandan
M. Irani
Introduction
393
2
From Frames to Scenes
395
4
The Extended Spatial Information: The Panoramic Mosaic Image
396
1
The Geometric Information
397
1
The Dynamic Information
398
1
Uses of the Scene-based Representation
399
17
Visual Summaries: A Visual Table of Content
399
1
Mosaic-based Video Indexing and Annotation
400
8
Mosaic-based Video Enhancement
408
3
Mosaic-based Video Compression
411
5
Building the Scene-based Representation
416
8
Estimating the Geometric Transformations
416
4
Sequence Alignment and Integration
420
3
Moving Object Detection and Tracking
423
1
Conclusion
424
1
Bibliography
425