search for books and compare prices
Tables of Contents for Applied Hydrogeology/Book and Disk
Chapter/Section Title
Page #
Page Count
CHAPTER ONE Water
1
26
1.1 Water
1
2
1.2 Hydrology and Hydrogeology
3
1
1.3 The Hydrologic Cycle
4
4
1.4 Energy Transformations
8
1
1.5 The Hydrologic Equation
9
3
Case Study: Mono Lake
10
2
1.6 Hydrogeologists
12
1
1.7 Applied Hydrogeology
12
1
1.8 The Business of Hydrogeology (What Do Hydrogeologists Do All Day?)
13
6
1.8.1 Application of Hydrogeology to Human Concerns
13
3
1.8.2 Business Aspects of Hydrogeology
16
1
1.8.3 Ethical Aspects of Hydrogeology
17
2
1.9 Sources of Hydrogeologic Information
19
2
1.10 Working the Problems
21
6
CHAPTER TWO Evaporation and Precipitation
27
20
2.1 Evaporation
27
4
2.2 Transpiration
31
1
2.3 Evapotranspiration
32
4
2.4 Condensation
36
1
2.5 Formation of Precipitation
36
2
2.6 Measurement of Precipitation
38
1
2.7 Snow Measurements
39
1
2.8 Effective Depth of Precipitation
40
7
CHAPTER THREE Runoff and Streamflow
47
30
3.1 Events During Precipitation
47
6
3.2 Hydrograph Separation
53
8
3.2.1 Baseflow Recessions
53
1
3.2.2 Storm Hydrograph
53
5
3.2.3 Gaining and Losing Streams
58
3
3.3 Rainfall-Runoff Relationships
61
1
3.4 Duration Curves
62
2
3.5 Determining Ground-Water Recharge from Baseflow
64
3
3.6 Measurement of Streamflow
67
3
3.6.1 Stream Gaging
67
2
3.6.2 Weirs
69
1
3.7 Manning Equation
70
7
CHAPTER FOUR Properties of Aquifers
77
54
4.1 Matter and Energy
77
3
4.2 Porosity of Earth Materials
80
10
4.2.1 Definition of Porosity
80
2
4.2.2 Porosity and Classification of Sediments
82
4
4.2.3 Porosity of Sedimentary Rocks
86
2
4.2.4 Porosity of Plutonic and Metamorphic Rocks
88
1
4.2.5 Porosity of Volcanic Rocks
89
1
4.3 Specific Yield
90
3
4.4 Hydraulic Conductivity of Earth Materials
93
10
4.4.1 Darcy's Experiment
94
1
4.4.2 Hydraulic Conductivity
95
3
4.4.3 Permeability of Sediments
98
3
Case Study: Hydraulic Conductivity Estimates in Glacial Outwash
101
1
4.4.4 Permeability of Rocks
102
1
4.5 Permeameters
103
4
4.6 Water Table
107
2
4.7 Aquifers
109
5
4.8 Water Table and Potentiometric Surface Maps
114
1
4.9 Aquifer Characteristics
115
4
4.10 Compressibility and Effective Stress
119
1
4.11 Homogeneity and Isotropy
120
4
4.12 Gradient of the Potentiometric Surface
124
7
CHAPTER FIVE Principles of Ground-Water Flow
131
44
5.1 Introduction
131
1
5.2 Mechanical Energy
132
2
5.3 Hydraulic Head
134
3
5.4 Head in Water of Variable Density
137
4
5.5 Force Potential and Hydraulic Head
141
1
5.6 Darcy's Law
142
 
5.6.1 Darcy's Law in Terms of Force and Potential
142
1
5.6.2 The Applicability of Darcy's Law
143
2
5.6.3 Specific Discharge and Average Linear Velocity
145
 
5.7 Equations of Ground-Water Flow
140
11
5.7.1 Confined Aquifers
146
4
5.7.2 Unconfined Aquifers
150
1
5.8 Solution of Flow Equations
151
1
5.9 Gradient of Hydraulic Head
151
2
5.10 Relationship of Ground-Water Flow Direction to grad h
153
1
5.11 Flow Lines and Flow Nets
153
6
5.12 Refraction of Flow Lines
159
2
5.13 Steady Flow in a Confined Aquifer
161
2
5.14 Steady Flow in an Unconfined Aquifer
163
12
CHAPTER SIX Soil Moisture and Ground-Water Recharge
175
22
6.1 Introduction
175
1
6.2 Porosity and Water Content of Soil
175
5
6.3 Capillarity and the Capillary Fringe
180
3
6.4 Pore-Water Tension in the Vadose Zone
183
1
6.5 Soil Moisture
183
4
6.6 Theory of Unsaturated Flow
187
4
6.7 Water-Table Recharge
191
6
CHAPTER SEVEN Ground-Water Flow to Wells
197
78
7.1 Introduction
197
1
7.2 Basic Assumptions
198
1
7.3 Computing Drawdown Caused by a Pumping Well
198
16
7.3.1 Unsteady Radial Flow
198
2
7.3.2 Flow in a Completely Confined Aquifer
200
3
7.3.3 Flow in a Leaky, Confined Aquifer
203
9
7.3.4 Flow in an Unconfined Aquifer
212
2
7.4 Determining Aquifer Parameters from Time-Drawdown Data
214
29
7.4.1 Introduction
214
1
7.4.2 Steady-State Conditions
215
4
7.4.3 Nonequilibrium Flow Conditions
219
17
7.4.4 Nonequilibrium Radial Flow in a Leaky Aquifer with Storage in the Aquitard
236
1
7.4.5 Nonequilibrium Radial Flow in an Unconfined Aquifer
237
4
7.4.6 Effect of Partial Penetration of Wells
241
2
7.5 Slug Tests
243
13
7.5.1 Determination of Aquifer Parameters with Slug Tests
243
1
7.5.2 Cooper-Bredehoeft-Papadopulos Method for a Confined Aquifer
244
3
7.5.3 Hvorslev Slug-Test Method
247
4
7.5.4 Bouwer and Rice Slug-Test Method
251
5
7.6 Estimating Aquifer Transmissivity from Specific Capacity Data
256
1
7.7 Intersecting Pumping Cones and Well Interference
257
1
7.8 Effect of Hydrogeologic Boundaries
258
3
7.9 Aquifer-Test Design
261
14
7.9.1 Single-Well Aquifer Tests
261
3
7.9.2 Aquifer Tests with Observation Wells
264
11
CHAPTER EIGHT Regional Ground-Water Flow
275
44
8.1 Introduction
275
1
8.2 Steady Regional Ground-Water Flow in Unconfined Aquifers
275
12
8.2.1 Recharge and Discharge Areas
275
1
8.2.2 Ground-Water Flow Patterns in Homogeneous Aquifers
276
7
8.2.3 Effect of Buried Lenses
283
1
8.2.4 Nonhomogeneous and Anisotropic Aquifers
284
3
8.3 Transient Flow in Regional Ground-Water Systems
287
1
8.4 Noncyclical Ground Water
288
1
8.5 Springs
289
2
8.6 Geology of Regional Flow Systems
291
17
Case Study: Regional Flow Systems in the Great Basin
291
2
Case Study: Regional Flow Systems in the Coastal Zone of the Southeastern United States
293
10
Case Study: Regional Flow System of the High Plains Aquifer
303
5
8.7 Interactions of Ground Water and Lakes or Wetlands
308
11
CHAPTER NINE Geology of Ground-Water Occurrence
319
70
9.1 Introduction
319
1
9.2 Unconsolidated Aquifers
320
15
9.2.1 Glaciated Terrain
321
4
Case Study: Hydrogeology of a Buried Valley Aquifer at Dayton, Ohio
325
3
9.2.2 Alluvial Valleys
328
1
9.2.3 Alluvium in Tectonic Valleys
329
2
Case Study: Tectonic Valleys--San Bernardino Area
331
4
9.3 Lithified Sedimentary Rocks
335
21
Case Study: Sandstone Aquifer of Northeastern Illinois-Southeastern Wisconsin
335
3
9.3.1 Complex Stratigraphy
338
2
9.3.2 Folds and Faults
340
3
9.3.3 Clastic Sedimentary Rocks
343
2
9.3.4 Carbonate Rocks
345
10
9.3.5 Coal and Lignite
355
1
9.4 Igneous and Metamorphic Rocks
356
5
9.4.1 Intrusive Igneous and Metamorphic Rocks
356
2
9.4.2 Volcanic Rocks
358
1
Case Study: Volcanic Plateaus--Columbia River Basalts
358
1
Case Study: Volcanic Domes--Hawaiian Islands
359
2
9.5 Ground Water in Permafrost Regions
361
3
Case Study: Alluvial Aquifers--Fairbanks, Alaska
363
1
9.6 Ground Water in Desert Areas
364
1
9.7 Coastal Plain Aquifers
364
4
9.8 Fresh-Water-Saline-Water Relations
368
8
9.8.1 Coastal Aquifers
368
5
9.8.2 Oceanic Islands
373
3
9.9 Tidal Effects
376
1
9.10 Ground-Water Regions of the United States
377
12
CHAPTER TEN Water Chemistry
389
44
10.1 Introduction
389
1
10.2 Units of Measurement
390
1
10.3 Types of Chemical Reactions in Water
391
1
10.4 Law of Mass Action
392
2
10.5 Common-Ion Effect
394
1
10.6 Chemical Activities
394
4
10.7 Ionization Constant of Water and Weak Acids
398
3
10.8 Carbonate Equilibrium
401
6
10.8.1 Carbonate Reactions
401
2
10.8.2 Carbonate Equilibrium in Water with Fixed Partial Pressure of CO(2)
403
3
10.8.3 Carbonate Equilibrium with External pH Control
406
1
10.9 Free Energy
407
1
10.10 Oxidation Potential
408
4
10.11 Ion Exchange
412
2
10.12 Isotope Hydrology
414
6
10.12.1 Stable Isotopes
415
4
10.12.2 Radioactive Isotopes Used for Age Dating
419
1
10.13 Major Ion Chemistry
420
1
10.14 Presentation of Results of Chemical Analyses
421
12
10.14.1 Piper Diagram
421
3
10.14.2 Stiff Pattern
424
1
10.14.3 Schoeller Semilogarithmic Diagram
425
1
Case Study: Chemical Geohydrology of the Floridan Aquifer System
426
7
CHAPTER ELEVEN Water Quality and Ground-Water Contamination
433
78
11.1 Introduction
433
4
11.2 Water-Quality Standards
437
4
11.3 Collection of Water Samples
441
1
11.4 Ground-Water Monitoring
442
8
11.4.1 Planning a Ground-Water Monitoring Program
442
1
11.4.2 Installing Ground-Water Monitoring Wells
443
4
11.4.3 Withdrawing Water Samples from Monitoring Wells
447
3
11.5 Vadose-Zone Monitoring
450
3
11.6 Mass Transport of Solutes
453
19
11.6.1 Introduction
453
1
11.6.2 Diffusion
453
1
11.6.3 Advection
454
1
11.6.4 Mechanical Dispersion
455
1
11.6.5 Hydrodynamic Dispersion
455
6
11.6.6 Retardation
461
10
11.6.7 Degradation of Organic Compounds
471
1
11.7 Ground-Water Contamination
472
15
11.7.1 Introduction
472
1
11.7.2 Septic Tanks and Cesspools
473
2
11.7.3 Landfills
475
6
11.7.4 Chemical Spills and Leaking Underground Tanks
481
3
11.7.5 Mining
484
2
Case Study: Contamination from Uranium Tailings Ponds
486
1
11.7.6 Other Sources of Ground-Water Contamination
487
1
11.8 Ground-Water Restoration
487
6
11.8.1 Introduction
487
1
11.8.2 Source-Control Measures
487
3
11.8.3 Plume Treatment
490
3
11.9 Case History: Ground-Water Contamination at a Superfund Site
493
8
11.9.1 Background
493
2
11.9.2 Geology
495
1
11.9.3 Hydrogeology
495
2
11.9.4 Ground-Water Contamination
497
2
11.9.5 Site Remediation
499
2
11.10 Capture Zone Analysis
501
10
CHAPTER TWELVE Ground-Water Development and Management
511
32
12.1 Introduction
511
1
12.2 Dynamic Equilibrium in Natural Aquifers
512
2
Case Study: Deep Sandstone Aquifer of Northeastern Illinois
513
1
12.3 Ground-Water Budgets
514
2
12.4 Management Potential of Aquifers
516
2
12.5 Paradox of Safe Yield
518
1
12.6 Water Law
519
12
12.6.1 Legal Concepts
519
1
12.6.2 Laws Regulating Quantity of Surface Water
520
3
12.6.3 Laws Regulating Quantity of Ground Water
523
3
Case Study: Arizona's Ground-Water Code
526
1
12.6.4 Laws Regulating the Quality of Water
527
3
Case Study: Wisconsin's Ground-Water Protection Law
530
1
12.7 Artificial Recharge
531
2
12.8 Protection of Water Quality in Aquifers
533
3
12.9 Ground-Water Mining and Cyclic Storage
536
2
12.10 Conjunctive Use of Ground and Surface Water
538
2
12.11 Trends in Water Resources Management
540
3
CHAPTER THIRTEEN Field Methods
543
50
13.1 Introduction
543
1
13.2 Fracture-Trace Analysis
543
6
13.3 Surficial Methods of Geophysical Investigations
549
22
13.3.1 Direct-Current Electrical Resistivity
549
6
13.3.2 Electromagnetic Conductivity
555
4
13.3.3 Seismic Methods
559
7
13.3.4 Ground-Penetrating Radar and Magnetometer Surveys
566
2
13.3.5 Gravity and Aeromagnetic Methods
568
3
13.4 Geophysical Well Logging
571
11
13.4.1 Caliper Logs
573
1
13.4.2 Temperature Logs
574
1
13.4.3 Single-Point Resistance
574
2
13.4.4 Resistivity
576
1
13.4.5 Spontaneous Potential
576
1
13.4.6 Nuclear Logging
576
6
13.5 Hydrogeologic Site Evaluations
582
2
13.6 Responsibilities of the Field Hydrogeologist
584
4
13.7 Project Reports
588
5
CHAPTER FOURTEEN Ground-Water Models
593
24
14.1 Introduction
593
3
14.2 Applications of Ground-Water Models
596
1
14.3 Data Requirements for Models
597
1
14.4 Finite-Difference Models
598
7
14.4.1 Finite-Difference Grids
598
2
14.4.2 Finite-Difference Notation
600
1
14.4.3 Boundary Conditions
600
2
14.4.4 Methods of Solution for Steady-State Case for Square Grid Spacing
602
2
14.4.5 Methods of Solution for the Transient Case
604
1
14.5 Finite-Element Models
605
1
14.6 Method of Characteristics
606
1
14.7 Use of Published Models
606
4
Case Study: Ground-Water Modeling for a Planned Underground Mine
610
7
Appendices
617
18
1 Values of the function W(u) for various values of u
618
1
2 Values of the function F(n, µ) for various values of n and µ
619
1
3 Values of the functions W(u, r/B) and W(u(A), r/B) for various values of u or u(A)
620
1
4 Values of the function H(µ, ß)
621
1
5 Values of the functions K(o)(x) and exp (x)K(o)(x)
622
1
6 Values of the functions W(u(A), (XXX)) and W(u(B), (XXX)) for water-table aquifers
623
2
7 Table for length conversion
625
1
8 Table for area conversion
625
1
9 Table for volume conversion
626
1
10 Table for time conversion
626
1
11 Solubility products for selected minerals and compounds
627
1
12 Atomic weights and numbers of naturally occurring elements
628
2
13 Table of values of erf (x) and erfc (x)
630
1
14 Absolute density and absolute viscosity of water
631
1
15 Loading and running computer programs
632
3
Glossary
635
16
Answers to Selected Problems
651
4
References
655
26
Index
681